Free Access
Issue
ESAIM: M2AN
Volume 47, Number 4, July-August 2013
Page(s) 1185 - 1205
DOI https://doi.org/10.1051/m2an/2012064
Published online 17 June 2013
  1. R.A. Adams, Sobolev Spaces. Academic Press (1975). [Google Scholar]
  2. A.K. Aziz and I. Babuška, The mathematical foundations of the finite element method with applications to partial differential equations. Academic Press, New York (1972). [Google Scholar]
  3. L. Baillet and T. Sassi, Mixed finite element formulation in large deformation frictional contact problem. European J. Comput. Mech. 14 (2005) 287–304. [Google Scholar]
  4. Z. Belhachmi and F. Ben Belgacem, Quadratic finite element for Signorini problem. Math. Comput. 72 (2003) 83–104. [Google Scholar]
  5. F. Ben Belgacem, P. Hild and P. Laborde, Extension of the mortar finite element method to a variational inequality modeling unilateral contact. Math. Models Methods Appl. Sci. 9 (1999) 287–303. [CrossRef] [MathSciNet] [Google Scholar]
  6. F. Ben Belgacem, Y. Renard and L. Slimane, A Mixed Formulation for the Signorini Problem in nearly Incompressible Elasticity. Appl. Numer. Math. 54 (2005) 1–22. [CrossRef] [Google Scholar]
  7. F. Ben Belgacem and Y. Renard, Hybrid finite element methods for the Signorini problem. Math. Comput. 72 (2003) 1117–1145. [CrossRef] [MathSciNet] [Google Scholar]
  8. C. Bernardi, Y. Maday and A.T. Patera,A New Nonconforming Approach to Domain Decomposition: The Mortar Element Method, Collège de France seminar, edited by H. Brezis, J.-L. Lions. Pitman (1994) 13–51. [Google Scholar]
  9. S.C. Brenner and L.R. Scott, Mathematical Theory of Finite Element Methods. Texts Appl. Math. Springer Verlag, New-York 15 (1994). [CrossRef] [Google Scholar]
  10. J.-F. Bonnans, J. Ch. Gilbert, C. Lemaréchal and C.A. Sagastizábal, Numerical optimization: Theoretical and practical aspects. Universitext (Second revised ed. translation of 1997 French ed.). Springer-Verlag, Berlin (2006). [Google Scholar]
  11. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series Comput. Math., vol. 15. Springer Verlag, New York (1991). [Google Scholar]
  12. F. Brezzi, W.W. Hager and P.A. Raviart, Error estimates for the finite element solution of variational inequalities. Numer. Math. 28 (1977) 431–443. [CrossRef] [MathSciNet] [Google Scholar]
  13. L. Cazabeau, Y. Maday and C. Lacour, Numerical quadratures and mortar methods. In Computational Sciences for the 21-st Century, edited by Bristeau et al., Wiley and Sons (1997) 119–128. [Google Scholar]
  14. A. Chernov, M. Maischak and E.P. Stephan, hp-mortar boundary element method for two-body contact problems with friction. Math. Methods Appl. Sci. 31 (2008) 2029–2054. [CrossRef] [Google Scholar]
  15. P.-G. Ciarlet, The Finite Element Method for Elliptic Problems. North Holland (1978). [Google Scholar]
  16. M. Crouzeix and V. Thomée, The Stability in Lp and W1,p of the L2-Projection on Finite Element Function Spaces. Mathods Comput. 48 (1987) 521–532. [Google Scholar]
  17. G. Duvaut and J.-P. Lions, Les inéquations en mécanique et en physique. Dunod, Paris (1972). [Google Scholar]
  18. S. Faletta, The Approximate Integration in the Mortar Method Constraint. Domain Decomposition Methods in Science and Engineering XVI. Lect. Notes Comput. Sci. Eng. Part III, 55 (2007) 555–563. [CrossRef] [Google Scholar]
  19. R.S. Falk, Error Estimates for the Approximation of a Class of Variational Inequalities. Math. Comput. 28 963–971 (1974). [CrossRef] [MathSciNet] [Google Scholar]
  20. K.A. Fischer and P. Wriggers, Frictionless 2D contact formulations for finite deformations based on the mortar method. Comput. Mech. 36 (2005) 226–244. [CrossRef] [Google Scholar]
  21. B. Flemisch, M.A. Puso and B.I. Wohlmuth, A new dual mortar method for curved interfaces: 2D elasticity. Internat. J. Numer. Methods Eng. 63 (2005) 813–832. [CrossRef] [Google Scholar]
  22. J. Haslinger, I. Hlavcáček and J. Nečas, Numerical Methods for Unilateral Problems in Solid Mechanics, in Handbook of Numerical Analysis, Volume IV, Part 2, edited by P.G. Ciarlet and J.L. Lions. North Holland (1996). [Google Scholar]
  23. F. Hecht, Freefem++. Third Edition, Version 3.11-1 http://www.freefem.org/ff++http://www.freefem.org/ff++. [Google Scholar]
  24. P. Hild and Y. Renard, An improved a priori error analysis for finite element approximations of Signorini’s problem. SIAM J. Numer. Analys. to appear (2012). [Google Scholar]
  25. P. Hild, Problèmes de contact unilatéral et maillages éléments finis incompatibles. Thèse de l’Université Paul Sabatier, Toulouse 3 (1998). [Google Scholar]
  26. P. Hild, Numerical implementation of two nonconforming finite element methods for unilateral contact. Comput. Methods Appl. Mech. Eng. 184 (2000) 99–123. [CrossRef] [Google Scholar]
  27. P. Hild, P. Laborde. Quadratic finite element methods for unilateral contact problems. Appl. Numer. Math. 41 (2002) 401–421. [CrossRef] [MathSciNet] [Google Scholar]
  28. D. Hua, L. Wang. A mixed finite element method for the unilateral contact problem in elasticity. Sci. China Ser. A 49 (2006) 513–524. [CrossRef] [MathSciNet] [Google Scholar]
  29. S. Hüeber, B.I. Wohlmuth. An optimal a priori error estimate for nonlinear multibody contact problems. SIAM J. Numer. Anal. 43 (2005) 156–173. [CrossRef] [MathSciNet] [Google Scholar]
  30. S. Hüeber, M. Mair and B.I. Wohlmuth, A priori error estimates and an inexact primal-dual active set strategy for linear and quadratic finite elements applied to multibody contact problems. Appl. Numer. Math. 54 (2005) 555–576. [CrossRef] [Google Scholar]
  31. N. Kikuchi and J.T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM (1988). [Google Scholar]
  32. T.Y. Kim, J.E. Dolbow and T.A. Laursen, A Mortared Finite Element Method for Frictional Contact on Arbitrary Surfaces. Comput. Mech. 39 (2007) 223–235. [CrossRef] [Google Scholar]
  33. T.A. Laursen, M.A. Puso and J. Sandersc, Mortar contact formulations for deformable-deformable contact: Past contributions and new extensions for enriched and embedded interface formulations. Comput. Methods Appl. Mech. Eng. 205-208 (2012) 3–15. [CrossRef] [Google Scholar]
  34. T.A. Laursen and B. Yang, New Developments in Surface-to-Surface Discretization Strategies for Analysis of Interface Mechanics. Computational Plasticity. Comput. Methods Appl. Sci. 7 (2010) 67–86. [CrossRef] [Google Scholar]
  35. M.-X. Li, Q. Lin and S.-H. Zhang, Superconvergence of finite element method for the Signorini problem. J. Comput. Appl. Math. 222 (2008) 284–292. [CrossRef] [Google Scholar]
  36. M. Moussaoui and K. Khodja, Régularité des solutions d’un problème mêlé Dirichlet–Signorini dans un domaine polygonal plan. Commun. Part. Differ. Equ. 17 (1992) 805–826. [CrossRef] [MathSciNet] [Google Scholar]
  37. M.A. Puso, T.A. Laursen and J. Solberg, A segment-to-segment mortar contact method for quadratic elements and large deformations. Comput. Meth. Appl. Mech. and Eng. 197 (2008) 555–566. [CrossRef] [Google Scholar]
  38. M.A. Puso and T.A. Laursen, A Mortar Segment-to-Segment Contact Method for Large Deformation Solid Mechanics. Comput. Methods Appl. Mech. Eng. 193 (2004) 601–629. [CrossRef] [Google Scholar]
  39. P. Seshaiyer and M. Suri, Uniform hp Convergence Results for the Mortar Finite Element Method. Math. Comput. 69 521–546 (2000). [Google Scholar]
  40. L. Slimane, Méthodes mixtes et traitement du verrouillage numérique pour la résolution des inéquations variationnelles. Thèse l’Institut National des Sciences Appliquées de Toulouse (2001). [Google Scholar]
  41. B.I. Wohlmuth, A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier. SIAM J. Numer. Anal. 38 (2001) 989–1012,. [CrossRef] [MathSciNet] [Google Scholar]
  42. B. Wohlmuth, R. Krause. Monotone multigrid methods on nonmatching grids for nonlinear multibody contact problems. SIAM J. Sci. Comput. 25 (2003) 324–347. [CrossRef] [Google Scholar]
  43. B. Yang, T.A. Laursen, X. Meng. Two dimensional mortar contact methods for large deformation frictional sliding. Internat. J. Numer. Methods Eng. 62 (2005) 1183–1225. [CrossRef] [Google Scholar]
  44. Z.-H. Zhong, Finite Element Procedures for Contact-Impact Problems. Oxford University Press (1993). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you