Free Access
Volume 47, Number 4, July-August 2013
Page(s) 1167 - 1184
Published online 17 June 2013
  1. T. Abboud, Electromagnetic waves in periodic media, in Second International Conference on Mathematical and Numerical Aspects of Wave Propagation, Newark, DE. SIAM, Philadelphia (1993) 1–9. [Google Scholar]
  2. H. Alber, A quasi-periodic boundary value problem for the laplacian and the continuation of its resolvent. Proc. Royal Soc. Edinburgh 82 (1979) 251–272. [CrossRef] [Google Scholar]
  3. T. Arens, Scattering by biperiodic layered media: The integral equation approach.Habilitation Thesis, Universität Karlsruhe (2010). [Google Scholar]
  4. G. Bao, Variational approximation of Maxwell’s equations in biperiodic structures. SIAM J. Appl. Math. 57 (1997) 364–381. [CrossRef] [Google Scholar]
  5. G. Bao, L. Cowsar and W. Masters, Mathematical modeling in optical science. SIAM Frontiers Appl. Math. SIAM, Philadelphia (2001). [Google Scholar]
  6. G. Bao and D.C. Dobson, On the scattering by a biperiodic structure. Proc. Amer. Math. Soc. 128 (2000) 2715–2723. [CrossRef] [MathSciNet] [Google Scholar]
  7. A.-S. Bonnet-Bendhia and F. Starling, Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem. Math. Methods Appl. Sci. 17 (1994) 305–338. [CrossRef] [Google Scholar]
  8. S.N. Chandler-Wilde and P. Monk, Existence, uniqueness, and variational methods for scattering by unbounded rough surfaces. SIAM. J. Math. Anal. 37 (2005) 598–618. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Costabel, M. Dauge and S. Nicaise, Corner Singularities and Analytic Regularity for Linear Elliptic Systems. Part I: Smooth domains. [Google Scholar]
  10. D. Dobson and A. Friedman, The time-harmonic Maxwell’s equations in a doubly periodic structure. J. Math. Anal. Appl. 166 (1992) 507–528. [CrossRef] [Google Scholar]
  11. D.C. Dobson, A variational method for electromagnetic diffraction in biperiodic structures. Math. Model. Numer. Anal. 28 (1994) 419–439. [Google Scholar]
  12. H. Haddar and A. Lechleiter, Electromagnetic wave scattering from rough penetrable layers. SIAM J. Math. Anal. 43 (2011) 2418–2433. [CrossRef] [MathSciNet] [Google Scholar]
  13. W. McLean, Strongly Elliptic Systems and Boundary Integral Operators. Cambridge University Press, Cambridge, UK (2000). [Google Scholar]
  14. P. Monk, Finite Element Methods for Maxwell’s Equations. Oxford Science Publications, Oxford (2003). [Google Scholar]
  15. F. Rellich, Darstellung der Eigenwerte von Δu + λu = 0 durch ein Randintegral. Math. Zeitschrift 46 (1940) 635–636. Doi: 10.1007/BF01181459. [CrossRef] [Google Scholar]
  16. G. Schmidt, On the diffraction by biperiodic anisotropic structures. Appl. Anal. 82 (2003) 75–92. [CrossRef] [Google Scholar]
  17. C. Wilcox, Scattering Theory for Diffraction Gratings. Appl. Math. Sci. Springer-Verlag 46 (1984). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you