Free Access
Issue
ESAIM: M2AN
Volume 47, Number 5, September-October 2013
Page(s) 1515 - 1531
DOI https://doi.org/10.1051/m2an/2013078
Published online 14 August 2013
  1. A. Bobylev and S. Rjasanow, Difference scheme for the Boltzmann equation based on the fast Fourier transform. Eur. J. Mech. B Fluids 16 (1997) 293–306. [Google Scholar]
  2. A.V. Bobylev, Exact solutions of the Boltzmann equation. Dokl. Akad. Nauk SSSR 225 (1975) 1296–1299. [MathSciNet] [Google Scholar]
  3. A.V. Bobylev, A. Palczewski and J. Schneider, On approximation of the Boltzmann equation by discrete velocity models. C. R. Acad. Sci. Paris Sér. I Math. 320 (1995) 639–644. [Google Scholar]
  4. A.V. Bobylev and S. Rjasanow, Fast deterministic method of solving the Boltzmann equation for hard spheres. Eur. J. Mech. B Fluids 18 (1999) 869–887. [CrossRef] [MathSciNet] [Google Scholar]
  5. A.V. Bobylev and S. Rjasanow, Numerical solution of the Boltzmann equation using a fully conservative difference scheme based on the fast fourier transform. Trans. Theory Statist. Phys. 29 (2000) 289–310. [CrossRef] [Google Scholar]
  6. A.V. Bobylev and M.C. Vinerean, Construction of discrete kinetic models with given invariants. J. Statist. Phys. 132 (2008) 153–170. [CrossRef] [Google Scholar]
  7. C. Buet, A discrete-velocity scheme for the Boltzmann operator of rarefied gas dynamics. Trans. Theory Statist. Phys. 25 (1996) 33–60. [Google Scholar]
  8. H. Cabannes, R. Gatignol and L.-S. Luo, The Discrete Boltzmann Equation (Theory and Applications). University of California, College of engineering, Los-Angeles (2003). [Google Scholar]
  9. C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral methods in fluid dynamics. Springer Series in Computational Physics. Springer-Verlag, New York (1988). [Google Scholar]
  10. T. Carleman, Sur la théorie de l’équation intégrodifférentielle de Boltzmann. Acta Math. 60 (1933) 91–146. [CrossRef] [MathSciNet] [Google Scholar]
  11. C. Cercignani, Theory and application of the Boltzmann equation. Elsevier, New York (1975). [Google Scholar]
  12. C. Cercignani, R. Illner and M. Pulvirenti, The mathematical theory of dilute gases, in vol. 106 of Appl. Math. Sci. Springer-Verlag, New York (1994). [Google Scholar]
  13. J.W. Cooley and J.W. Tukey, An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19 (1965) 297–301. [CrossRef] [MathSciNet] [Google Scholar]
  14. F. Coquel, F. Rogier and J. Schneider, A deterministic method for solving the homogeneous Boltzmann equation. Rech. Aérospat. 3 (1992) 1–10. [Google Scholar]
  15. F. Filbet, J.W. Hu and S. Jin, A numerical scheme for the quantum Boltzmann equation efficient in the fluid regime. ESAIM: M2AN 42 (2012) 443–463. [CrossRef] [EDP Sciences] [Google Scholar]
  16. F. Filbet and C. Mouhot, Analysis of spectral methods for the homogeneous Boltzmann equation. Trans. Amer. Math. Soc. 363 (2011) 1947–1980. [CrossRef] [MathSciNet] [Google Scholar]
  17. F. Filbet, C. Mouhot and L. Pareschi, Solving the Boltzmann equation in N log2N. SIAM J. Sci. Comput. 28 (2006) 1029. [CrossRef] [MathSciNet] [Google Scholar]
  18. I. Gamba and S.H. Tharkabhushanam, Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states. J. Comput. Phys. 228 (2009) 2012–2036. [CrossRef] [Google Scholar]
  19. G.H. Hardy and E.M. Wright, An introduction to the theory of numbers, sixth ed. Oxford University Press, Oxford (2008). Revised by D.R. Heath-Brown and J.H. Silverman, with a foreword by Andrew Wiles. [Google Scholar]
  20. J. Hu and L. Ying, A fast spectral algorithm for the quantum Boltzmann collision operator, to appear in CMS. Preprint (2011). [Google Scholar]
  21. I. Ibragimov and S. Rjasanow, Numerical solution of the Boltzmann equation on the uniform grid. Comput. 69 (2002) 163–186. [CrossRef] [Google Scholar]
  22. P. Kowalczyk, A. Palczewski, G. Russo and Z. Walenta, Numerical solutions of the Boltzmann equation: comparison of different algorithms. Eur. J. Mech. B Fluids 27 (2008) 62–74. [CrossRef] [Google Scholar]
  23. M. Krook and T.T. Wu, Exact solutions of the Boltzmann equation. Phys. Fluids 20 (1977) 1589. [CrossRef] [Google Scholar]
  24. P. Markowich and L. Pareschi, Fast, conservative and entropic numerical methods for the Boson Boltzmann equation. Numer. Math. 99 (2005) 509–532. [CrossRef] [MathSciNet] [Google Scholar]
  25. Y.-L. Martin, F. Rogier and J. Schneider, Une méthode déterministe pour la résolution de l’équation de Boltzmann inhomogène. C. R. Acad. Sci. Paris Sér. I Math. 314 (1992) 483–487. [Google Scholar]
  26. P. Michel and J. Schneider, Approximation simultanée de réels par des nombres rationnels et noyau de collision de l’équation de Boltzmann. C. R. Acad. Sci. Sér. I Math. 330 (2000) 857–862. [Google Scholar]
  27. C. Mouhot and L. Pareschi, Fast methods for the Boltzmann collision integral. C. R. Acad. Sci. Paris Sér. I Math. 339 (2004) 71–76. [CrossRef] [Google Scholar]
  28. C. Mouhot and L. Pareschi, Fast algorithms for computing the Boltzmann collision operator. Math. Comput. 75 (2006) 1833–1852. [CrossRef] [Google Scholar]
  29. A. Nogueira and B. Sevennec, Multidimensional Farey partitions. Indag. Math. (N.S.) 17 (2006) 437–456. [CrossRef] [Google Scholar]
  30. V.A. Panferov and A.G. Heintz, A new consistent discret-velocity model for the Boltzmann equation. Math. Models Methods Appl. Sci. 25 (2002) 571–593. [CrossRef] [Google Scholar]
  31. L. Pareschi and B. Perthame, A Fourier spectral method for homogeneous Boltzmann equations. In Proc. of the Second International Workshop on Nonlinear Kinetic Theories and Mathematical Aspects of Hyperbolic Systems (Sanremo, 1994), Trans. Theory Statist. Phys. 25 (1996) 369–382. [Google Scholar]
  32. L. Pareschi and G. Russo, Numerical solution of the Boltzmann equation. I. Spectrally accurate approximation of the collision operator. SIAM J. Numer. Anal. 37 (2000) 1217–1245. [CrossRef] [MathSciNet] [Google Scholar]
  33. L. Pareschi and G. Russo, On the stability of spectral methods for the homogeneous Boltzmann equation. In Proc. of the Fifth International Workshop on Mathematical Aspects of Fluid and Plasma Dynamics (Maui, HI 1998). Trans. Theory Statist. Phys. 29 (2000) 431–447. [Google Scholar]
  34. T. Płatkowski and R. Illner, Discrete velocity models of the Boltzmann equation: a survey on the mathematical aspects of the theory. SIAM Rev. 30 (1988) 213–255. [CrossRef] [MathSciNet] [Google Scholar]
  35. T. Platkowski and W. Walús, An acceleration procedure for discrete velocity approximation of the Boltzmann collision operator. Comput. Math. Appl. 39 (2000) 151–163. [CrossRef] [MathSciNet] [Google Scholar]
  36. F. Rogier and J. Schneider, A direct method for solving the Boltzmann equation. Trans. Theory Statist. Phys. 23 (1994) 313–338. [CrossRef] [MathSciNet] [Google Scholar]
  37. D. Valougeorgis and S. Naris, Acceleration schemes of the discrete velocity method: Gaseous flows in rectangular microchannels. SIAM J. Sci. Comput. 25 (2003) 534–552. [CrossRef] [MathSciNet] [Google Scholar]
  38. C. Villani, A review of mathematical topics in collisional kinetic theory. Elsevier Science (2002). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you