Free Access
Issue
ESAIM: M2AN
Volume 47, Number 5, September-October 2013
Page(s) 1533 - 1552
DOI https://doi.org/10.1051/m2an/2013079
Published online 14 August 2013
  1. I. Babuška and P. Chatzipantelidis, On solving elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Engrg. 191 (2002) 4093–4122. [CrossRef] [MathSciNet] [Google Scholar]
  2. I. Babuška, F. Nobile and R. Tempone, Worst case scenario analysis for elliptic problems with uncertainty. Numer. Math. 101 (2005) 185–219. [CrossRef] [MathSciNet] [Google Scholar]
  3. I. Babuška, F. Nobile and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Num. Anal. 45 (2007) 1005–1034. [Google Scholar]
  4. I. Babuška, R. Tempone and G.E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42 (2004) 800–825. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Barth, C. Schwab and N. Zollinger, Multi-Level Monte Carlo Finite Element method for elliptic PDE’s with stochastic coefficients. Numer. Math. 119 (2011) 123–161. [CrossRef] [MathSciNet] [Google Scholar]
  6. V.I. Bogachev, Gaussian Measures, Mathematical Surveys and Monographs in vol. 62. AMS, Providence, RI (1998). [Google Scholar]
  7. J.H. Bramble and J.T. King, A finite element method for interface problems with smooth boundaries and interfaces. Adv. Comput. Math. 6 (1996) 109–138. [CrossRef] [MathSciNet] [Google Scholar]
  8. J.W. Barrett and C.M. Elliott, Fitted and unfitted finite-element methods for elliptic equations with interfaces. IMA J. Numer. Anal. 7 (1987) 283–300. [CrossRef] [MathSciNet] [Google Scholar]
  9. C. Canuto and T. Kozubek, A fictitious domain approach to the numerical solution of pdes in stochastic domains. Numer. Math. 107 (2007) 257–293. [CrossRef] [MathSciNet] [Google Scholar]
  10. Z. Chen and J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79 (1998) 175–202. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Chernov and C. Schwab, First order k-th moment finite element analysis of nonlinear operator equations with stochastic data. Math. Comput. To appear (2012). [Google Scholar]
  12. M.K. Deb, I.M. Babuska and J.T. Oden, Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput. Methods Appl. Mech. Engrg. 190 (2001) 6359–6372. [CrossRef] [MathSciNet] [Google Scholar]
  13. B.J. Debusschere, H.N. Najm, P.P. Pébay, O.M. Knio, R.G. Ghanem and O.P.L. Maître, Numerical challenges in the use of polynomial chaos representations for stochastic processes. SIAM J. Sci. Comput. 26 (2004) 698–719. [CrossRef] [MathSciNet] [Google Scholar]
  14. M.C. Delfour and J.-P. Zolesio, Shapes and Geometries — Analysis, Differential Calculus, and Optimization. SIAM, Society for Industrial and Appl. Math., Philadelphia (2001). [Google Scholar]
  15. F.R. Desaint and J.-P. Zolésio, Manifold derivative in the Laplace-Beltrami equation. J. Functional Anal. 151 (1997) 234–269. [CrossRef] [Google Scholar]
  16. P. Frauenfelder, C. Schwab and R.A. Todor, Finite elements for elliptic problems with stochastic coefficients. Comput. Methods Appl. Mech. Engrg. 194 (2005) 205–228. [CrossRef] [MathSciNet] [Google Scholar]
  17. R.G. Ghanem and P.D. Spanos, Stochastic finite elements: a spectral approach. Springer-Verlag (1991). [Google Scholar]
  18. M. Griebel and H. Harbrecht, Approximation of bivariate functions: singular value decomposition versus sparse grids. IMA J. Numer. Anal. To appear (2013). [Google Scholar]
  19. H. Harbrecht, A finite element method for elliptic problems with stochastic input data. Appl. Numer. Math. 60 (2010) 227–244. [CrossRef] [MathSciNet] [Google Scholar]
  20. H. Harbrecht, On output functionals of boundary value problems on stochastic domains. Math. Meth. Appl. Sci. 33 (2010) 91–102. [Google Scholar]
  21. H. Harbrecht, M. Peters and R. Schneider, On the low-rank approximation by the pivoted Cholesky decomposition. Appl. Numer. Math. 62 (2012) 428–440. [CrossRef] [MathSciNet] [Google Scholar]
  22. H. Harbrecht, R. Schneider and C. Schwab, Multilevel frames for sparse tensor product spaces. Numer. Math. 110 (2008) 199–220. [CrossRef] [MathSciNet] [Google Scholar]
  23. H. Harbrecht, R. Schneider and C. Schwab, Sparse second moment analysis for elliptic problems in stochastic domains. Numer. Math. 109 (2008) 385–414. [CrossRef] [MathSciNet] [Google Scholar]
  24. F. Hettlich and W. Rundell, The determination of a discontinuity in a conductivity from a single boundary measurement. Inverse Problems 14 (1998) 67–82. [CrossRef] [MathSciNet] [Google Scholar]
  25. F. Hettlich and W. Rundell, Identification of a discontinuous source in the heat equation. Inverse Problems 17 (2001) 1465–1482. [CrossRef] [MathSciNet] [Google Scholar]
  26. K. Ito, K. Kunisch and Z. Li, Level-set function approach to an inverse interface problem. Inverse Problems 17 (2001) 1225–1242. [CrossRef] [MathSciNet] [Google Scholar]
  27. J.B. Keller, Stochastic equations and wave propagation in random media. Proc. Symp. Appl. Math. in vol. 16. AMS, Providence, R.I. (1964) 145–170. [Google Scholar]
  28. M. Kleiber and T.D. Hien, The stochastic finite element method: basic perturbation technique and computer implementation. Wiley, Chichester (1992). [Google Scholar]
  29. P.E. Kloeden and E. Platen, Numerical solution of stochastic differential equations. Springer, Berlin 3rd ed. (1999). [Google Scholar]
  30. M. Ledoux and M. Talagrand, Probability in Banach Spaces. Isoperimetry and Processes. Springer, Berlin (1991). [Google Scholar]
  31. J. Li, J.M. Melenk, B. Wohlmuth and J. Zou, Optimal a priori estimates for higher order finite elements for elliptic interface problems. Appl. Numer. Math. 60 (2010) 19–37. [CrossRef] [MathSciNet] [Google Scholar]
  32. Z. Li and K. Ito, The immersed interface method: numerical solutions of PDEs involving interfaces and irregular domains. SIAM, Society for Industrial and Appl. Math., Philadelphia (2006). [Google Scholar]
  33. H.G. Matthies and A. Keese, Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Engrg. 194 (2005) 1295–1331. [Google Scholar]
  34. O. Pironneau, Optimal Shape Design for Elliptic Systems. Springer, New York (1984). [Google Scholar]
  35. P. Protter, Stochastic Integration and Differential Equations: A New Approach. Springer, Berlin, 3rd ed. (1995). [Google Scholar]
  36. C. Schwab and R.A. Todor, Sparse finite elements for elliptic problems with stochastic loading. Numer. Math. 95 (2003) 707–734. [CrossRef] [MathSciNet] [Google Scholar]
  37. C. Schwab and R.A. Todor, Sparse finite elements for stochastic elliptic problems – higher order moments. Comput. 71 (2003) 43–63. [CrossRef] [MathSciNet] [Google Scholar]
  38. C. Schwab and R.A. Todor, Karhunen-Loéve approximation of random fields by generalized fast multipole methods. J. Comput. Phys. 217 (2006) 100–122. [CrossRef] [MathSciNet] [Google Scholar]
  39. J. Sokolowski and J.-P. Zolesio, Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer-Verlag (1992). [Google Scholar]
  40. T. von Petersdorff and C. Schwab, Sparse finite element methods for operator equations with stochastic data. Appl. Math. 51 (2006) 145–180. [CrossRef] [MathSciNet] [Google Scholar]
  41. X. Wan, B. Rozovskii and G. E. Karniadakis, A stochastic modeling method based on weighted Wiener chaos and Malliavan calculus. PNAS 106 (2009) 14189–14194. [CrossRef] [MathSciNet] [Google Scholar]
  42. J. Wloka, Partial Differential Equations. Cambridge University Press, Cambridge (1987). [Google Scholar]
  43. D. Xiu and G.E. Karniadakis, Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comput. Methods Appl. Mech. Engrg. 191 (2002) 4927–4948. [Google Scholar]
  44. D. Xiu and D.M. Tartakovsky, Numerical methods for differential equations in random domains. SIAM J. Scientific Comput. 28 (2006) 1167–1185. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you