Free Access
Volume 47, Number 6, November-December 2013
Page(s) 1691 - 1712
Published online 11 October 2013
  1. M. Alster, Improved calculation of resonant frequencies of Helmholtz resonators. J. Sound Vibr. 24 (1972) 63–85. [Google Scholar]
  2. C. Amrouche, V. Girault and J. Giroire, Dirichlet and Neumann exterior problems for the n-dimensional Laplace operator an approach in weighted sobolev spaces. J. Math. Pures Appl. 76 (1997) 55–81. [CrossRef] [MathSciNet] [Google Scholar]
  3. A. Bendali and M. Fares, Boundary integral equations methods in acoustics. Computer Methods for Acoustics Problems, Chapter 1. Edited by F. Magoules. Saxe-Coburg Publications, Kippen, Stirlingshire, Scotland (2008) 1–36. [Google Scholar]
  4. R.C. Chanaud, Effects of geometry on the resonance frequency of Helmholtz resonators, part II. J. Sound Vibr. 204 (1997) 829–834. [Google Scholar]
  5. E.T. Copson, On the problem of the electrified disc. Proc. Edinburgh Math. Soc. (Ser. 2) 8 (1947) 14–19. [CrossRef] [Google Scholar]
  6. R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. I. Interscience Publishers, Inc., New York, N.Y. (1953). [Google Scholar]
  7. J. Deny and J.L. Lions. Les espaces du type de Beppo Levi. Ann. Inst. Fourier 5 (1953) 54. [Google Scholar]
  8. B. Enquist and A. Majda, Absorbing boundary conditions for the numerical simulation of wave. Math. Comput. 31 (1977) 629–651. [Google Scholar]
  9. J. Giroire, Étude de quelques problèmes aux limites extérieurs et résolution par équations intégrales. Ph.D. Thesis. Paris VI (1987). [Google Scholar]
  10. M.S. Howe, On the theory of unsteady high Reynolds number flow through a circular aperture. Proc. Roy. Soc. London A. Math. Phys. Sci. 366 (1979) 205. [CrossRef] [Google Scholar]
  11. M.S. Howe, Influence of wall thickness on Rayleigh conductivity and flow-induced aperture tones. J. Fluids Struct. 11 (1997) 351–366. [CrossRef] [Google Scholar]
  12. M.S. Howe, Acoustics of fluid-structure interactions. Cambridge University Press (1998). [Google Scholar]
  13. G. C. Hsiao and W.L. Wendland, Boundary Integral Equations. Springer, Berlin-Heidelberg (2008). [Google Scholar]
  14. U. Ingard, On the theory and design of acoustic resonators. J. Acoust. Soc. America 25 (1953) 1037–1061. [Google Scholar]
  15. J.B. Keller and D. Givoli, Exact non-reflecting boundary conditions. J. Comput. Phys. 82 (1989) 172–192. [CrossRef] [MathSciNet] [Google Scholar]
  16. E. Kerschen, A. Cain and G. Raman, Analytical Modeling of Helmholtz Resonator Based Powered Resonance Tubes, in 2nd AIAA Flow Control Conference, AIAA Paper 2004-2691 (2004). [Google Scholar]
  17. D.G. Luenberger, Optimization by vector space methods. Wiley-Interscience (1997). [Google Scholar]
  18. C. Macaskill and E.O. Tuck, Evaluation of the acoustic impedance of a screen. J. Australian Math. Soc. Ser. B Appl. Math. 20 (1977) 46–61. [CrossRef] [Google Scholar]
  19. C. Malmary, Étude théorique et expérimentale de l’impédance acoustique de matériaux en présence d’un écoulement d’air tangentiel. Ph.D. thesis. University du Maine (2000). [Google Scholar]
  20. William McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge, UK, and New York, USA (2000). [Google Scholar]
  21. T.H. Melling, The acoustic impendance of perforates at medium and high sound pressure levels. J. Sound Vibr. 29 (1973) 1–65. [Google Scholar]
  22. S. Mendez and J.D. Eldredge, Acoustic modeling of perforated plates with bias flow for Large-Eddy Simulations. J. Comput. Phys. 228 (2009) 4757–4772. [CrossRef] [Google Scholar]
  23. J. Mohring, Helmholtz resonators with large aperture. Acta Acoust. United Acoust. 85 (1999) 751–763. [Google Scholar]
  24. C.L. Morfey, Acoustic properties of openings at low frequencies. J. Sound Vibr. 9 (1969) 357–366. [CrossRef] [Google Scholar]
  25. R.L. Panton and J.M. Miller, Resonant frequencies of cylindrical Helmholtz resonators. J. Acoust. Soc. America 57 (1975) 1533–1535. [Google Scholar]
  26. J.W.S. Rayleigh, The Theory of Sound, vols. 1 and 2. Dover Publications, New York (1945). [Google Scholar]
  27. J.E. Roberts and J.-M. Thomas, Mixed and hybrid methods, in Handbook of numerical analysis. Vol. 2. Elsevier Science Publishers (1991). [Google Scholar]
  28. S. Sauter and C. Schwab, Boundary Element Methods, vol. 39 of Springer Series in Computational Mathematics. Springer, Heidelberg (2010). [Google Scholar]
  29. I.N. Sneddon, Mixed boundary value problems in potential theory. North-Holland Pub. Co. (1966). [Google Scholar]
  30. E.O. Tuck, Matching problems involving flow through small holes. Adv. Appl. Mech. 15 (1975) 89–158. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you