Free Access
Volume 47, Number 6, November-December 2013
Page(s) 1783 - 1796
Published online 07 October 2013
  1. D.N. Arnold, D. Boffi and R.S. Falk, Approximation by quadrilateral finite elements. Math. Comput. 71 (2002) 909–922. [CrossRef] [MathSciNet] [Google Scholar]
  2. S.C. Brenner and L.Y. Sung, Linear finite element methods for planar elasticity. Math. Comput. 59 (1992) 321–338. [Google Scholar]
  3. Z. Cai, J. Douglas, Jr., J.E. Santos, D. Sheen and X. Ye, Nonconforming quadrilateral finite elements: A correction. Calcolo 37 (2000) 253–254. [CrossRef] [MathSciNet] [Google Scholar]
  4. Z. Cai, J. Douglas, Jr. and X. Ye, A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations. Calcolo 36 (1999) 215–232. [CrossRef] [MathSciNet] [Google Scholar]
  5. Z. Chen, Projection finite element methods for semiconductor device equations. Computers Math. Appl. 25 (1993) 81–88. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO – Math. Model. Numer. Anal. 7 (1973) 33–75. [Google Scholar]
  7. J. Douglas, Jr., J.E. Santos, D. Sheen and X. Ye, Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems. ESAIM: M2AN 33 (1999) 747–770. [Google Scholar]
  8. H. Han, Nonconforming elements in the mixed finite element method. J. Comput. Math. 2 (1984) 223–233. [Google Scholar]
  9. J. Hu and Z.-C. Shi, Constrained quadrilateral nonconforming rotated Q1-element. J. Comput. Math. 23 (2005) 561–586. [Google Scholar]
  10. Y. Jeon, H. Nam, D. Sheen and K. Shim, A nonparametric DSSY nonconforming quadrilateral element with maximal inf-sup constant (2013). In preparation. [Google Scholar]
  11. M. Köster, A. Ouazzi, F. Schieweck, S. Turek and P. Zajac, New robust nonconforming finite elements of higher order. Appl. Numer. Math. 62 (2012) 166–184. [CrossRef] [Google Scholar]
  12. R. Kouhia and R. Stenberg, A linear nonconforming finite element method for nearly incompressible elasticity and Stokes flow. Comput. Methods Appl. Mech. Engrg. 124 (1995) 195–212. [CrossRef] [MathSciNet] [Google Scholar]
  13. C.-O. Lee, J. Lee and D. Sheen, A locking-free nonconforming finite element method for planar elasticity. Adv. Comput. Math. 19 (2003) 277–291. [CrossRef] [MathSciNet] [Google Scholar]
  14. P. Ming and Z.-C. Shi, Nonconforming rotated Q1 element for Reissner-Mindlin plate. Math. Models Methods Appl. Sci. 11 (2001) 1311–1342. [CrossRef] [Google Scholar]
  15. P. Ming and Z.-C. Shi, Two nonconforming quadrilateral elements for the Reissner–Mindlin plate. Math. Models Methods Appl. Sci. 15 (2005) 1503–1517. [CrossRef] [Google Scholar]
  16. H. Nam, H.J. Choi, C. Park and D. Sheen, A cheapest nonconforming rectangular finite element for the Stokes problem. Comput. Methods Appl. Mech. Engrg. 257 (2013) 77–86. [CrossRef] [MathSciNet] [Google Scholar]
  17. C. Park and D. Sheen, P1-nonconforming quadrilateral finite element methods for second-order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 624–640. [CrossRef] [MathSciNet] [Google Scholar]
  18. C. Park and D. Sheen, A quadrilateral Morley element for biharmonic equations. Numer. Math. 124 (2013) 395–413. [CrossRef] [MathSciNet] [Google Scholar]
  19. R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differ. Equ. 8 (1992) 97–111. [Google Scholar]
  20. Z.-C. Shi, An explicit analysis of Stummel’s patch test examples. Int. J. Numer. Meth. Engrg. 20 (1984) 1233–1246. [CrossRef] [Google Scholar]
  21. Z.C. Shi, The FEM test for convergence of nonconforming finite elements. Math. Comput. 49 (1987) 391–405. [Google Scholar]
  22. S. Turek, Efficient solvers for incompressible flow problems, vol. 6. Lecture Notes in Comput. Sci. Engrg. Springer, Berlin (1999). [Google Scholar]
  23. M. Wang, On the necessity and sufficiency of the patch test for convergence of nonconforming finite elements. SIAM J. Numer. Anal. 39 (2001) 363–384. [CrossRef] [Google Scholar]
  24. Z. Zhang, Analysis of some quadrilateral nonconforming elements for incompressible elasticity. SIAM J. Numer. Anal. 34 (1997) 640–663. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you