Free Access
Volume 48, Number 1, January-February 2014
Page(s) 27 - 52
Published online 15 November 2013
  1. G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482–1518. [Google Scholar]
  2. L. Baffico, C. Grandmont, Y. Maday and A. Osses, Homogenization of elastic media with gaseous inclusions. Multiscale Model. Simul. 7 (2008) 432–465. [CrossRef] [Google Scholar]
  3. M. Baumgaertel and H.H. Winter, Determination of discrete relaxation and retardation time spectra from dynamic mechanical data. Rheologica Acta 28 (1989) 511–519. [CrossRef] [Google Scholar]
  4. A. Blasselle and G. Griso, Mechanical modeling of the skin. Asymptotic Analysis 74 (2011) 167–198. [MathSciNet] [Google Scholar]
  5. S. Boyaval, Reduced-basis approach for homogenization beyond the periodic setting. Multiscale Model. Simul. 7 (2008) 466–494. [CrossRef] [Google Scholar]
  6. R. Burridge and J. Keller, Biot’s poroelasticity equations by homogenization, in Macroscopic Properties of Disordered Media, vol. 154 of Lecture Notes in Physics. Springer (1982) 51–57. [Google Scholar]
  7. J.P. Butler, J.L. Lehr and J.M. Drazen, Longitudinal elastic wave propagation in pulmonary parenchyma. J. Appl. Phys. 62 (1987) 1349–1355. [CrossRef] [Google Scholar]
  8. J. Clegg and M.P. Robinson, A genetic algorithm used to fit Debye functions to the dielectric properties of tissues. 2010 IEEE Congress on Evolutionary Computation (CEC) (2010) 1–8. [Google Scholar]
  9. F. Dunn, Attenuation and speed of ultrasound in lung: Dependence upon frequency and inflation. J. Acoust. Soc. Am. 80 (1986) 1248–1250. [CrossRef] [PubMed] [Google Scholar]
  10. M. Fabrizio and A. Morro, Mathematical problems in linear viscoelasticity, vol. 12 of SIAM Studies in Applied Mathematics. SIAM, Philadelphia, PA (1992). [Google Scholar]
  11. M. Fang, R.P. Gilbert and X. Xie, Deriving the effective ultrasound equations for soft tissue interrogation. Comput. Math. Appl. 49 (2005) 1069–1080. [CrossRef] [Google Scholar]
  12. R.P. Gilbert and A. Mikelić, Homogenizing the acoustic properties of the seabed. I. Nonlinear Anal. 40 (2000) 185–212. [Google Scholar]
  13. Q. Grimal, A. Watzky and S. Naili, A one-dimensional model for the propagation of transient pressure waves through the lung. J. Biomech. 35 (2002) 1081–1089. [CrossRef] [PubMed] [Google Scholar]
  14. A. Hanygan, Viscous dissipation and completely monotonic relaxation moduli. Rheologica Acta 44 (2005) 614–621. [CrossRef] [Google Scholar]
  15. F. Hecht, FreeFem++ manual (2012). [Google Scholar]
  16. J.S. Hesthaven and T. Warburton, Nodal discontinuous Galerkin methods, vol. 54 of Texts in Applied Mathematics. Springer, New York (2008). [Google Scholar]
  17. A. Kanevsky, M.H. Carpenter, D. Gottlieb and J.S. Hesthaven, Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes. J. Comput. Phys. 225 (2007) 1753–1781. [CrossRef] [Google Scholar]
  18. D.F. Kelley, T.J. Destan and R.J. Luebbers, Debye function expansions of complex permittivity using a hybrid particle swarm-least squares optimization approach. Antennas Propagation IEEE Trans. 55 (2007) 1999–2005. [CrossRef] [Google Scholar]
  19. C.A. Kennedy and M.H. Carpenter, Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44 (2003) 139–181. [CrossRef] [MathSciNet] [Google Scholar]
  20. A. Kloeckner, Hedge: Hybrid and Easy Discontinuous Galerkin Environment. http://www.cims.]˜kloeckner/ (2010). [Google Scholar]
  21. S.S. Kraman, Speed of low-frequency sound through lungs of normal men. J. Appl. Phys. (1983) 1862–1867. [Google Scholar]
  22. R.J. LeVeque, Numerical methods for conservation laws. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (1990). [Google Scholar]
  23. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1 of Travaux et Recherches Mathématiques. Dunod, Paris (1968). [Google Scholar]
  24. M. Lourakis, levmar: Levenberg-Marquardt nonlinear least squares algorithms in C/C++.˜lourakis/levmar/ (2004). [Google Scholar]
  25. Y. Maday, N. Morcos and T. Sayah, Reduced basis numerical homogenization for scalar elliptic equations with random coefficients: application to blood micro-circulation. Submitted to SIAM J. Appl Math. (2012). [Google Scholar]
  26. N. Morcos, Modélisation mathématique et simulation de systèmes microvasculaires. Ph.D. thesis, Université Pierre et Marie Curie (2011). [Google Scholar]
  27. G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608–623. [CrossRef] [MathSciNet] [Google Scholar]
  28. M.R. Owen and M.A. Lewis, The mechanics of lung tissue under high-frequency ventilation. SIAM J. Appl. Math. 61 (2001) 1731–1761. [CrossRef] [Google Scholar]
  29. H. Pasterkamp, S.S. Kraman and G.R. Wodicka, Respiratory sounds. advances beyond the stethoscope. Am. J. Respir. Crit. Care Med. 156 (1997) 974. [CrossRef] [PubMed] [Google Scholar]
  30. D.A. Rice, Sound speed in pulmonary parenchyma. J. Appl. Physiol. 54 (1983) 304–308. [PubMed] [Google Scholar]
  31. E. Roan and M.W. Waters, What do we know about mechanical strain in lung alveoli? Am. J. Physiol. Lung Cell Mol. Physiol. 301 (2011) 625–635. [CrossRef] [Google Scholar]
  32. D. Rueter, H.P. Hauber, D. Droeman, P. Zabel and S. Uhlig, Low-frequency ultrasound permeates the human thorax and lung: a novel approach to non-invasive monitoring. Ultraschall Med. 31 (2010) 53–62. [CrossRef] [PubMed] [Google Scholar]
  33. E. Sanchez–Palencia, Vibration of mixtures of solids and fluids, in Non-Homogeneous Media and Vibration Theory, vol. 127 of Lecture Notes in Physics. Springer (1980) 158–190. [Google Scholar]
  34. R.A. Schapery, A simple collocation method for fitting viscoelastic models to experimental data. GALCIT SM 63 (1961) 23. [Google Scholar]
  35. M. Siklosi, O.E. Jensen, R.H. Tew and A. Logg. Multiscale modeling of the acoustic properties of lung parenchyma. ESAIM: Proc. 23 (2008) 78–97. [CrossRef] [EDP Sciences] [Google Scholar]
  36. J. Sorvari and J. Hämäläinen, Time integration in linear viscoelasticity – a comparative study. Mech. Time-Dependent Mater. 14 (2010) 307–328 [CrossRef] [Google Scholar]
  37. B. Suki, S. Ito, D. Stamenović, K.R. Lutchen and E.P. Ingenito, Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces. J. Appl. Physiol. 98 (2005) 1892–1899. [CrossRef] [PubMed] [Google Scholar]
  38. P. Suquet, Linear problems. In Homogenization Techniques for Composite Media, vol. 272 of Lecture Notes in Physics. Edited by Enrique Sanchez–Palencia and André Zaoui. Springer (1987) 209–230. [Google Scholar]
  39. L. Tartar, The general theory of homogenization. A personalized introduction, vol. 7 of Lecture Notes of the Unione Matematica Italiana. Springer (2009). [Google Scholar]
  40. Y.-M. Yi, S.-H. Park and S.-K. Youn, Asymptotic homogenization of viscoelastic composites with periodic microstructures. Int. J. Solids Struct. 35 (1998) 2039–2055. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you