Free Access
Issue |
ESAIM: M2AN
Volume 48, Number 1, January-February 2014
|
|
---|---|---|
Page(s) | 53 - 86 | |
DOI | https://doi.org/10.1051/m2an/2013094 | |
Published online | 15 November 2013 |
- H. Attouch and J. Bolte, On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. 116 (2009) 5–16. [Google Scholar]
- V. Bach, Error bound for the Hartree-Fock energy of atoms and molecules. Commun. Math. Phys. 147 (1992) 527–548. [CrossRef] [Google Scholar]
- V. Bach, J. Fröhlich and L. Jonsson, Bogolubov-Hartree-Fock mean field theory for neutron stars and other systems with attractive interactions. J. Math. Phys. 50 (2009) 22. [CrossRef] [Google Scholar]
- V. Bach, E.H. Lieb and J.Ph. Solovej, Generalized Hartree-Fock theory and the Hubbard model. J. Statist. Phys. 76 (1994) 3–89. [Google Scholar]
- J. Bardeen, L.N. Cooper and J.R. Schrieffer, Theory of superconductivity. Phys. Rev. 108 (1957) 1175–1204. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- L. Baudouin and J. Salomon, Constructive solution of a bilinear optimal control problem for a Schrödinger equation. Syst. Cont. Lett. 57 (2008) 453–464. [CrossRef] [Google Scholar]
- P. Billard and G. Fano, An existence proof for the gap equation in the superconductivity theory. Commun. Math. Phys. 10 (1968) 274–279. [Google Scholar]
- N.N. Bogoliubov, About the theory of superfluidity. Izv. Akad. Nauk SSSR 11 (1947) 77. [Google Scholar]
- N.N. Bogoliubov, Energy levels of the imperfect Bose gas. Bull. Moscow State Univ. 7 (1947) 43. [Google Scholar]
- N.N. Bogoliubov, On the theory of superfluidity. J. Phys. (USSR) 11 (1947) 23. [Google Scholar]
- N.N. Bogoliubov, On a New Method in the Theory of Superconductivity. J. Exp. Theor. Phys. 34 (1958) 58. [Google Scholar]
- J. Bolte, A. Daniilidis, O. Ley and L. Mazet, Characterizations of Łojasiewicz inequalities: subgradient flows, talweg, convexity. Trans. Amer. Math. Soc. 362 (2010) 3319–3363. [Google Scholar]
- É. Cancès, SCF algorithms for HF electronic calculations, in Mathematical models and methods for ab initio quantum chemistry, vol. 74, in Lect. Notes Chem., Chapt. 2. Springer, Berlin (2000) 17–43. [Google Scholar]
- É. Cancès, M. Defranceschi, W. Kutzelnigg, C. Le Bris and Y. Maday, Computational quantum chemistry: a primer, in Handbook of numerical analysis, vol. X, Handb. Numer. Anal. North-Holland, Amsterdam (2003) 3–270. [Google Scholar]
- É. Cancès and C. Le Bris, Can we outperform the DIIS approach for electronic structure calculations? Int. J. Quantum Chem. 79 (2000) 82–90. [CrossRef] [Google Scholar]
- É. Cancès and C. Le Bris, On the convergence of SCF algorithms for the Hartree-Fock equations. ESAIM: M2AN 34 (2000) 749–774. [CrossRef] [EDP Sciences] [Google Scholar]
- É. Cancès, C. Le Bris and Y. Maday, Méthodes mathématiques en chimie quantique. Une introduction, vol. 53 of Collection Mathématiques et Applications. Springer (2006). [Google Scholar]
- E.B. Davies, Spectral theory and differential operators, vol. 42, Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1995). [Google Scholar]
- J. Dechargé and D. Gogny, Hartree-Fock-Bogolyubov calculations with the D1 effective interaction on spherical nuclei. Phys. Rev. C 21 (1980) 1568–1593. [CrossRef] [Google Scholar]
- C. Fefferman and R. de la Llave, Relativistic stability of matter. I. Rev. Mat. Iberoamericana 2 (1986) 119–213. [CrossRef] [MathSciNet] [Google Scholar]
- R.L. Frank, C. Hainzl, R. Seiringer and J.P. Solovej, Microscopic Derivation of Ginzburg-Landau Theory. J. Amer. Math. Soc. 25 (2012) 667–713. [Google Scholar]
- R.L. Frank, C. Hainzl, S. Naboko and R. Seiringer, The critical temperature for the BCS equation at weak coupling. J. Geom. Anal. 17 (2007) 559–567. [CrossRef] [MathSciNet] [Google Scholar]
- G. Friesecke, The multiconfiguration equations for atoms and molecules: charge quantization and existence of solutions. Arch. Ration. Mech. Anal. 169 35–71 (2003). [CrossRef] [MathSciNet] [Google Scholar]
- D. Gogny, in Proceedings of the International Conference on Nuclear Physics, edited by J. de Boer and H.J. Mang. (1973) 48. [Google Scholar]
- D. Gogny, in Proceedings of the International Conference on Nuclear Self-Consistent Fields, edited by M. Porneuf and G. Ripka. Trieste (1975) 333. [Google Scholar]
- D. Gogny and P.-L. Lions, Hartree-Fock theory in nuclear physics. RAIRO Modél. Math. Anal. Numér. 20 (1986) 571–637. [Google Scholar]
- C. Hainzl, E. Hamza, R. Seiringer and J.P. Solovej, The BCS functional for general pair interactions. Commun. Math. Phys. 281 (2008) 349–367. [CrossRef] [Google Scholar]
- C. Hainzl, E. Lenzmann, M. Lewin and B. Schlein, On blowup for time-dependent generalized Hartree-Fock equations. Annal. Henri Poincaré 11 (2010) 1023–1052. [Google Scholar]
- C. Hainzl and R. Seiringer, General decomposition of radial functions on Rn and applications to N-body quantum systems. Lett. Math. Phys. 61 (2002) 75–84. [CrossRef] [Google Scholar]
- C. Hainzl and R. Seiringer, The BCS critical temperature for potentials with negative scattering length. Lett. Math. Phys. 84 (2008) 99–107. [CrossRef] [Google Scholar]
- M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof, Schrödinger inequalities and asymptotic behavior of the electron density of atoms and molecules. Phys. Rev. A 16 (1977) 1782–1785. [CrossRef] [Google Scholar]
- T. Kato, Perturbation theory for linear operators. Springer (1995). [Google Scholar]
- C. Le Bris, Computational chemistry from the perspective of numerical analysis. Acta Numerica 14 (2005) 363–444. [CrossRef] [MathSciNet] [Google Scholar]
- E. Lenzmann and M. Lewin, Minimizers for the Hartree-Fock-Bogoliubov theory of neutron stars and white dwarfs. Duke Math. J. 152 (2010) 257–315. [CrossRef] [Google Scholar]
- A. Levitt, Convergence of gradient-based algorithms for the Hartree-Fock equations. ESAIM: M2AN 46 (2012) 1321–1336. [CrossRef] [EDP Sciences] [Google Scholar]
- M. Lewin, Geometric methods for nonlinear many-body quantum systems. J. Funct. Anal. 260 (2011) 3535–3595. [CrossRef] [MathSciNet] [Google Scholar]
- E.H. Lieb, Variational principle for many-fermion systems. Phys. Rev. Lett. 46 (1981) 457–459. [CrossRef] [Google Scholar]
- E.H. Lieb and R. Seiringer, The Stability of Matter in Quantum Mechanics. Cambridge Univ. Press (2010). [Google Scholar]
- E.H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems. Commun. Math. Phys. 53 (1977) 185–194. [CrossRef] [MathSciNet] [Google Scholar]
- E.H. Lieb and W.E. Thirring, Gravitational collapse in quantum mechanics with relativistic kinetic energy. Annal. Phys. 155 (1984) 494–512. [CrossRef] [Google Scholar]
- E.H. Lieb and H.-T. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys. 112 (1987) 147–174. [CrossRef] [Google Scholar]
- P.-L. Lions, Solutions of Hartree-Fock equations for Coulomb systems. Commun. Math. Phys. 109 (1987) 33–97. [CrossRef] [MathSciNet] [Google Scholar]
- S. Łojasiewicz, Une propriété topologique des sous-ensembles analytiques réels. Colloques du CNRS, Les équations aux dérivés partielles (1963) 117. [Google Scholar]
- S. Łojasiewicz, Sur la géométrie semi- et sous-analytique. Ann. Inst. Fourier (Grenoble) 43 (1993) 1575–1595. [CrossRef] [Google Scholar]
- J.B. McLeod and Y. Yang, The uniqueness and approximation of a positive solution of the Bardeen-Cooper-Schrieffer gap equation. J. Math. Phys. 41 (2000) 6007–6025. [CrossRef] [Google Scholar]
- S. Paul, Modèle de Hartree-Fock-Bogoliubov : une perspective mathématique et numérique. Ph.D. thesis, Univ. Cergy-Pontoise (2012). [Google Scholar]
- P. Quentin and H. Flocard. Self-Consistent Calculations of Nuclear Properties with Phenomenological Effective Forces. Ann. Rev. Nucl. Part. Sci. 28 (1978) 523–594. [Google Scholar]
- P. Ring and P. Schuck, The nuclear many-body problem, volume Texts and Monographs in Physics. Springer Verlag, New York (1980). [Google Scholar]
- C.C.J. Roothaan, New developments in molecular orbital theory. Rev. Mod. Phys. 23 (1951) 69–89. [CrossRef] [Google Scholar]
- J. Salomon, Convergence of the time-discretized monotonic schemes. ESAIM: M2AN 41 (2007) 77–93. [CrossRef] [EDP Sciences] [Google Scholar]
- S. Consortium, Scilab: The free software for numerical computation. Scilab Consortium, Digiteo, Paris, France (2011). [Google Scholar]
- B. Simon, Geometric methods in multiparticle quantum systems. Commun. Math. Phys. 55 (1977) 259–274. [CrossRef] [Google Scholar]
- T.H.R. Skyrme. The effective nuclear potential. Nuclear Phys. 9 (1959) 615–634. [Google Scholar]
- J.Ph. Solovej, Proof of the ionization conjecture in a reduced Hartree-Fock model. Invent. Math. 104 (1991) 291–311. [CrossRef] [MathSciNet] [Google Scholar]
- J.Ph. Solovej, The ionization conjecture in Hartree-Fock theory. Annal. Math. 158 (2003) 509–576. [CrossRef] [Google Scholar]
- A. Vansevenant, The gap equation in superconductivity theory. Phys. D 17 (1985) 339–344. [CrossRef] [MathSciNet] [Google Scholar]
- Y.S. Yang, On the Bardeen-Cooper-Schrieffer integral equation in the theory of superconductivity. Lett. Math. Phys. 22 (1991) 27–37. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.