Free Access
Issue
ESAIM: M2AN
Volume 48, Number 1, January-February 2014
Page(s) 107 - 134
DOI https://doi.org/10.1051/m2an/2013096
Published online 18 December 2013
  1. I. Aavatsmark, T. Barkve, O. Boe, T. Mannseth, Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods. SIAM J. Sci. Comput. 19 (1998) 1700–1716. [CrossRef] [MathSciNet] [Google Scholar]
  2. F. Boyer, F. Hubert, Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities. SIAM J. Numer. Anal. 46 (2008) 3032–3070. [CrossRef] [MathSciNet] [Google Scholar]
  3. F. Brezzi, K. Lipnikov, M. Shashkov, V. Simoncini, A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Meth. Appl. Mech. Eng. 196 (2007) 3682–3692. [Google Scholar]
  4. C. Buet, B. Després and E. Franck, Design of asymptotic preserving finite volume schemes for the hyperbolic heat equation on unstructured meshes Numerische Mathematik, Online First (2012). [Google Scholar]
  5. C. Cancès, M. Cathala, C. Le Potier, Monotone coercive cell-centered finite volume schemes for anisotropic diffusion equations, online Numer. Math. (2013). [Google Scholar]
  6. G. Cohen, Higher-Order Numerical Methods for Transient Wave Equations. Springer-Verlag (2001) [Google Scholar]
  7. B. Després, Convergence of non-linear finite volume schemes for linear transport. In Notes from the XIth Jacques-Louis Lions Hispano-French School on Numerical Simulation in Physics and Engineering. Grupo Anal. Teor. Numer. Modelos Cienc. Exp. Univ. Cadiz (2004) 219–239. [Google Scholar]
  8. B. Després, Lax theorem and Finite Volume schemes. Math. Comput. 73 (2004) 1203–1234. [CrossRef] [Google Scholar]
  9. J. Droniou, C. Le Potier, Construction and convergence study of local-maximum-principle preserving schemes for elliptic equations. SIAM J. Numer. Anal. 49 (2011) 459–490. [CrossRef] [Google Scholar]
  10. L.C. Evans, Partial Differential Equations. Rhode Island: American Mathematical Society, Providence (1988). [Google Scholar]
  11. R. Eymard, T. Gallouët and R. Herbin, Finite Volume Methods, vol. 7 of Handbook of Numerical Analysis. Edited by P.G. Ciarlet and J.L. Lions. North Holland (2000) 713–1020. [Google Scholar]
  12. R. Eymard, T. Gallouët and R. Herbin, Discretisation of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. SUSHI: a scheme using stabilization and hybrid interfaces, IMA J Numer Anal. 30 (2010) 1009–1043. [Google Scholar]
  13. D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer, New York (1983). [Google Scholar]
  14. A. Genty and C. Le Potier, Maximum and minimum principles for radionuclide transport calculations in geological radioactive waste repository: comparison between a mixed hybrid finite element method and finite volume element discretizations. Transp. Porous Media 88 (2011) 65–85. [CrossRef] [MathSciNet] [Google Scholar]
  15. E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, vol. 118 of Applied Mathematical Sciences. Springer (1996). [Google Scholar]
  16. R. Herbin, F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids, in: 5th International Symposium on Finite Volumes for Complex Applications, edited by V.R. Eymard and J.M. Herard. Wiley (2008) 659–692. [Google Scholar]
  17. Hermeline F., A finite volume method for approximating 3D diffusion operators on general meshes. J. Comput. Phys. 228 (2009) 5763–5786. [CrossRef] [MathSciNet] [Google Scholar]
  18. Kershaw D., Differencing of the diffusion equation in Lagrangian hydrodynamic codes. J. Comput. Phys. 39 (1981) 375–395. [CrossRef] [Google Scholar]
  19. C. Le Potier, Correction non linéaire et principe du maximum pour la discrétisation d’opérateurs de diffusion avec des schémas volumes finis centrés sur les mailles. C. R. Acad. Sci. Paris, Ser. I 348 (2010) 691–695. [CrossRef] [Google Scholar]
  20. C. Lepotier, private communication (2012). [Google Scholar]
  21. R.J. Leveque, Numerical Methods for Conservation Laws, Lectures in Mathematics. ETH-Zurich Birkhauser-Verlag, Basel (1990). [Google Scholar]
  22. K. Lipnikov, M. Shashkov, I. Yotov, Local flux mimetic finite difference methods. Numer. Math. 112 (2009) 115–152. [CrossRef] [MathSciNet] [Google Scholar]
  23. K. Lipnikov and M. Shashkov, A framework for developing a mimetic tensor artificial viscosity for Lagrangian hydrocodes on arbitrary polygonal meshes. J. Comput. Phys. 229 (2010) 7911–7941. [CrossRef] [Google Scholar]
  24. K. Lipnikov, G. Manzini and D. Svyatskiy, Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems. J. Comput. Phys. 230 (2011) 2620–2642. [Google Scholar]
  25. P.L. Roe, Characteristic-based schemes for the Euler equations. Ann. Rev. Fluid Mech. 18 (1986) 337–365. [NASA ADS] [CrossRef] [Google Scholar]
  26. Z. Sheng, J. Yue, G. Yuan, Monotone Finite volume schemes of non-equilibrium radiation diffusion equations of distorted meshes, SIAM J. Sci. Comput. 31 (2009) 2915–2934. [CrossRef] [Google Scholar]
  27. Yu.I. Shokin, The method of differential approximation, Springer-Verlag (1983). [Google Scholar]
  28. P. Sweby, High-resolution schemes using flux limiters for hyperbolic conservation-laws. SIAM J. Numer. Anal. 21 (1984) 995–1011. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you