Free Access
Volume 48, Number 1, January-February 2014
Page(s) 135 - 163
Published online 18 December 2013
  1. D. Amsallem and C. Farhat, An interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J. 46 (2008) 1803–1813. [CrossRef] [Google Scholar]
  2. D. Amsallem, J. Cortial, K. Carlberg and C. Farhat, A method for interpolating on manifolds structural dynamics reduced-order models. Int. J. Numer. Methods Eng. 80 (2009) 1241–1258. [Google Scholar]
  3. D. Amsallem, J. Cortial and C. Farhat, Toward real-time computational-fluid-dynamics-based aeroelastic computations using a database of reduced-order information. AIAA J. 48 (2010) 2029–2037. [CrossRef] [Google Scholar]
  4. D. Amsallem and J. Roychowdhury, ModSpec: An open, flexible specification framework for multi-domain device modelling. 2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (2011) 367–374. [Google Scholar]
  5. D. Amsallem and C. Farhat, On the stability of linearized reduced-order models: descriptor vs non-descriptor form. 42nd AIAA Fluid Dynamics Conference and Exhibit (2012) 25–28 New Orleans, LA (2012). [Google Scholar]
  6. A. Antoulas, Approximation of large-scale dynamical systems. SIAM, Philadelphia (2005). [Google Scholar]
  7. C. Beattie and S. Gugercin, Krylov-based model reduction of second-order systems with proportional damping, in Proc. 44th CDC/ECC (2005) 2278–2283. [Google Scholar]
  8. C. Beattie and S. Gugercin, Interpolatory projection methods for structure-preserving model reduction. Systems Control Lett. 58 (2009) 225–232. [CrossRef] [MathSciNet] [Google Scholar]
  9. T. Bui-Thanh, M. Damodoran and K. Willcox, Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition. AIAA J. 42 (2004) 1505–1516. [CrossRef] [Google Scholar]
  10. D. Chapelle, A. Gariah and J. Sainte-Marie, Galerkin approximation with proper orthogonal decomposition: new error estimates and illustrative examples. ESAIM: M2AN 46 (2012) 731–757. [CrossRef] [EDP Sciences] [Google Scholar]
  11. S. Chaturantabut and D. Sorensen, A state space error estimate for POD-DEIM nonlinear model reduction. SIAM J. Numer. Anal. 50 (2012) 46–63. [Google Scholar]
  12. R. Guyan, Reduction of stiffness and mass matrices. AIAA J. 3 (1965) 380–380. [CrossRef] [Google Scholar]
  13. S. Han and B. Feeny. Enhanced proper orthogonal decomposition for the modal analysis of homogeneous structures. J. Vibration Control 8 (2002) 19–40. [CrossRef] [Google Scholar]
  14. S. Herkt, M. Hinze and R. Pinnau, Convergence analysis of Galerkin POD for linear second order evolution equations. Hamburger Beiträge zur Angewandten Math. 2011–06 (2011). [Google Scholar]
  15. U. Hetmaniuk and R. Lehoucq, Uniform accuracy of eigenpairs from a shift-invert Lanczos method. SIAM J. Matrix Anal. Appl. 28 (2006) 927–948. [CrossRef] [MathSciNet] [Google Scholar]
  16. C. Homescu, L. Petzold and R. Serban, Error estimation for reduced-order models of dynamical systems. SIAM Rev. 49 (2007) 277–299. [CrossRef] [MathSciNet] [Google Scholar]
  17. T. Hughes, The finite element method: linear static and dynamic finite element analysis. Prentice–Hall (1987). [Google Scholar]
  18. D. B. Huynh, D. Knezevic and A. Patera, A Laplace transform certified reduced basis method; application to the heat equation and wave equation. C.R. Acad. Sci. Paris, Série I 349 (2011) 401–405. [CrossRef] [Google Scholar]
  19. K. Karhunen, Zur Spektraltheorie Stochastischer Prozesse. Ann. Acad. Sci. Fennicae 34 (1946). [Google Scholar]
  20. G. Kerschen, J.C. Golinval, A. Vakakis and L. Bergman, The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dyn. 41 (2005) 147–169. [CrossRef] [Google Scholar]
  21. K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math. 90 (2001) 117–148. [CrossRef] [MathSciNet] [Google Scholar]
  22. K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40 (2002) 492–515. [Google Scholar]
  23. K. Kunisch and S. Volkwein, Crank−Nicholson Galerkin proper orthogonal decomposition approximations for a general equation in fluid dynamics. 18th GAMM Seminar on Multigrid and Related Methods for Optimization Problems, Leipzig (2002) 97–114. [Google Scholar]
  24. K. Kunisch and S. Volkwein, Optimal snapshot location for computing POD basis functions. ESAIM: M2AN 44 (2010) 509–529. [CrossRef] [EDP Sciences] [Google Scholar]
  25. O. Lass and S. Volkwein. Adaptive POD basis computation for parameterized nonlinear systems using optimal snapshot location. Konstanzer Schriften Math. 304 (2012) 1–27. [Google Scholar]
  26. J. Lienemann, D. Billger, E. B. Rudnyi, A. Greiner and J.G. Korvink, MEMS compact modeling meets model order reduction: examples of the application of Arnoldi methods to microsystems devices. Technical Proceedings of the 2004 Nanotechnology conference and trade show, Nanotech 2004, March 1-7, Boston, MA 2 (2004) 303–306. [Google Scholar]
  27. T. Lieu and C. Farhat, Adaptation of aeroelastic reduced-order models and application to an F-16 configuration. AIAA J. 45 (2007) 1244–1269. [CrossRef] [Google Scholar]
  28. M. Loeve. Fonctions aléatoires de second ordre. C.R. Acad. Sci. Paris, 220 (1945). [Google Scholar]
  29. Oberwolfach benchmark collection. (2005). Available at [Google Scholar]
  30. A. Quarteroni, R. Sacco, and F. Saleri, Numerical Mathematics, Number 37 in Texts in Applied Mathematics. Springer (2000). [Google Scholar]
  31. M. Rathinam and L. Petzold, A new look at proper orthogonal decomposition. SIAM J. Numer. Anal. 41 (2003) 1893–1925. [CrossRef] [MathSciNet] [Google Scholar]
  32. E. W. Sachs and M. Schu, A priori error estimates for reduced order models in finance. ESAIM: M2AN. Doi:10.1051/m2na/2012039. [Google Scholar]
  33. L. Sirovich, Turbulence and the dynamics of coherent structures. Parts I-II. Quarterly of Applied Mathematics XVL (1987) 561–590. [Google Scholar]
  34. A. Tan, Reduced basis methods for 2nd order wave equation: application to one dimensional seismic problem. Masters thesis, Singapore-MIT Alliance, National University of Singapore (2006). [Google Scholar]
  35. J.P. Thomas, E. Dowell and K. Hall, Three-dimensional transonic aeroelasticity using proper orthogonal decomposition-based reduced order models. J. Aircraft 40 (2003) 544–551. [Google Scholar]
  36. K. Veroy, C. Prud’homme, D. Rovas, and A. Patera, A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. AIAA Pap. 2003-3847 (2003). [Google Scholar]
  37. K. Veroy and A. Patera, Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-based a posteriori error bounds. Int. J. Numer. Methods Eng. 47 (2005) 773–788. [Google Scholar]
  38. S. Volkwein, Model reduction using proper orthogonal decomposition. Lect. Notes (2011) 1–43. Available at [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you