Free Access
Volume 48, Number 1, January-February 2014
Page(s) 231 - 258
Published online 10 January 2014
  1. D. Aregba-Driollet, M. Briani and R. Natalini, Asymptotic high-order schemes for 2 × 2 dissipative hyperbolic systems. SIAM J. Numer. Anal. 46 (2008) 869–894. [CrossRef] [Google Scholar]
  2. V. Barocas and R. Tranquillo, An anisotropic biphasic theory of tissue-equivalent mechanics: The interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance. J. Biomech. Eng. 119 (1997) 137–145. [CrossRef] [PubMed] [Google Scholar]
  3. G. Bastin, J-M. Coron, B. d’Andréa-Novel, P. Suvarov, A. Vande Wouwer and A. Kienle, Stability of switched hyperbolic systems: the example of SMB chromatography” submitted IEEE-CDC (2013). [Google Scholar]
  4. G. Bretti, R. Natalini and M. Ribot, A numerical scheme for a hyperbolic relaxation model on networks. Numerical Analysis and Applied Mathematics ICNAAM 2011, AIP Conf. Proc. 1389 (2011) 1412–1415. [Google Scholar]
  5. A. Chauviere, L. Preziosi, Mathematical framework to model migration of cell population in extracellular matrix, in Cell mechanics. From single scale-based models to multiscale modeling. A. Chauviere, L. Preziosi and C. Verdier Eds., Taylor & Francis Group, CRC Press publisher, (2010) 285–318. [Google Scholar]
  6. R. Dáger and E. Zuazua, Wave propagation, observation and control in 1 - d flexible multi-structures, vol. 50 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer-Verlag, Berlin (2006). [Google Scholar]
  7. Y. Dolak and T. Hillen, Cattaneo models for chemosensitive movement. Numerical solution and pattern formation. J. Math. Biol. 46 (2003) 153–170; corrected version after misprinted p. 160 in J. Math. Biol. 46 (2003) 461–478. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  8. F. Filbet, P. Laurençot and B. Perthame, Derivation of hyperbolic models for chemosensitive movement. J. Math. Biol. 50 (2005) 189–207. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  9. A. Gamba, D. Ambrosi, A. Coniglio, A. de Candia, S. Di Talia, E. Giraudo, G. Serini, L. Preziosi and F. Bussolino, Percolation, morphogenesis, and Burgers dynamics in blood vessels formation. Phys. Rev. Lett. 90 (2003) 118101.1–118101.4. [CrossRef] [PubMed] [Google Scholar]
  10. M. Garavello and B. Piccoli, Traffic flow on networks. Conservation laws models, vol. 1 of AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), Springfield, MO (2006). [Google Scholar]
  11. L. Gosse, Asymptotic-preserving and well-balanced schemes for the 1D Cattaneo model of chemotaxis movement in both hyperbolic and diffusive regimes. J. Math. Anal. Appl. 388 (2012) 964–983. [CrossRef] [Google Scholar]
  12. L. Gosse, Well-balanced numerical approximations display asymptotic decay toward Maxwellian distributions for a model of chemotaxis in a bounded interval. SIAM J. Sci. Comput. 34 (2012) A520–A545. [CrossRef] [Google Scholar]
  13. J.M. Greenberg and W. Alt, Stability results for a diffusion equation with functional drift approximating a chemotaxis model. Trans. Amer. Math. Soc. 300 (1987) 235–258. [CrossRef] [MathSciNet] [Google Scholar]
  14. I. Guaraldo, Some analytical results for hyperbolic chemotaxis model on networks Ph.D. thesis, Università di Roma “La Sapienza” (2012). [Google Scholar]
  15. F. Guarguaglini and R. Natalini, Nonlinear transmission problems for quasilinear diffusion problems. Networks and Heterogeneous media 2 (2007) 359–381. [CrossRef] [MathSciNet] [Google Scholar]
  16. F. Guarguaglini, R. Natalini, C. Mascia and M. Ribot, Stability of constant states and qualitative behavior of solutions to a one dimensional hyperbolic model of chemotaxis. Discrete Contin. Dyn. Syst. Ser. B 12 (2009) 39–76. [CrossRef] [MathSciNet] [Google Scholar]
  17. A. Häcker, A mathematical model for mesenchymal and chemosensitive cell dynamics. J. Math. Biol. 64 (2012) 361–401. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  18. B. Haut and G. Bastin, A second order model of road junctions in fluid models of traffic networks. Netw. Heterog. Media 2 (2007) 227–253. [CrossRef] [MathSciNet] [Google Scholar]
  19. T. Hillen, Hyperbolic models for chemosensitive movement. Special issue on kinetic theory. Math. Mod. Methods Appl. Sci. 12 (2002) 1007–1034. [Google Scholar]
  20. T. Hillen, C. Rohde and F. Lutscher, Existence of weak solutions for a hyperbolic model of chemosensitive movement. J. Math. Anal. Appl. 26 (2001) 173–199. [CrossRef] [Google Scholar]
  21. T. Hillen and A. Stevens, Hyperbolic models for chemotaxis in 1-D. Nonlinear Anal. Real World Appl. 1 (2000) 409–433. [CrossRef] [Google Scholar]
  22. O. Kedem and A. Katchalsky, Thermodynamic analysis of the permeability of biological membrane to non-electrolytes. Biochimica et Biophysica Acta 27 (1958) 229–246. [Google Scholar]
  23. E.F. Keller and L.A. Segel, Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26 (1970) 399–415. [CrossRef] [PubMed] [Google Scholar]
  24. B.A.C. Harley, H. Kim, M.H. Zaman, I.V. Yannas, D.A. Lauffenburger and L.J. Gibson, Microarchitecture of Three-Dimensional Scaffolds Inuences Cell Migration Behavior via Junction Interactions. Biophys. J. 29 (2008) 4013–4024. [CrossRef] [Google Scholar]
  25. D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I. Jahresber. Deutsch. Math.-Verein. 105 (2003) 103–165. [Google Scholar]
  26. B.B. Mandal and S.C. Kundu, Cell proliferation and migration in silk broin 3D scaffolds. Biomaterials 30 (2009) 2956–2965. [CrossRef] [PubMed] [Google Scholar]
  27. J.D. Murray, Mathematical biology. I. An introduction, 3rd edn., vol. 17 of Interdisciplinary Applied Mathematics. Springer-Verlag, New York (2002); II. Spatial models and biomedical applications, 3rd edn., vol. 18 of Interdisciplinary Applied Mathematics. Springer-Verlag, New York (2003). [Google Scholar]
  28. R. Natalini, Convergence to equilibrium for the relaxation approximation of conservation laws. Commun. Pure Appl. Math. 49 (1996) 795–823. [CrossRef] [Google Scholar]
  29. R. Natalini and M. Ribot, An asymptotic high order mass-preserving scheme for a hyperbolic model of chemotaxis. SIAM J. Num. Anal. 50 (2012) 883–905. [CrossRef] [Google Scholar]
  30. B. Perthame, Transport equations in biology, Frontiers in Mathematics. Birkhäuser (2007). [Google Scholar]
  31. L. Preziosi and A. Tosin, Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications. J. Math. Biol. 58 (2009) 625–656. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  32. L.A. Segel, A theoretical study of receptor mechanisms in bacterial chemotaxis. SIAM J. Appl. Math. 32 (1977) 653–665. [CrossRef] [Google Scholar]
  33. C. Spadaccio, A. Rainer, S. De Porcellinis, M. Centola, F. De Marco, M. Chello, M. Trombetta, J.A. Genovese, A G-CSF functionalized PLLA scaffold for wound repair: an in vitro preliminary study. Conf. Proc. IEEE Eng. Med. Biol. Soc. (2010). [Google Scholar]
  34. J. Valein and E. Zuazua, Stabilization of the wave equation on 1-D networks. SIAM J. Control Optim. 48 (2009) 2771–2797. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you