Free Access
Volume 48, Number 1, January-February 2014
Page(s) 165 - 206
Published online 18 December 2013
  1. A. Ambroso, C. Chalons, F. Coquel and T. Galié, Relaxation and numerical approximation of a two-fluid two-pressure diphasic model. ESAIM: M2AN 43 (2009) 1063–1097. [CrossRef] [EDP Sciences] [Google Scholar]
  2. A. Ambroso, C. Chalons, F. Coquel, E. Godlewski, F. Lagoutière, P-A. Raviart and N. Seguin, The coupling of homogeneous models for two-phase flows. Int. J. Finite 4 (2007) 39. [Google Scholar]
  3. A. Ambroso, C. Chalons and P.-A. Raviart, A Godunov-type method for the seven-equation model of compressible two-phase flow. Comput. Fluids 54 (2012) 67–91. [Google Scholar]
  4. N. Andrianov and G. Warnecke, The Riemann problem for the Baer-Nunziato two-phase flow model. J. Comput. Phys. 195 (2004) 434–464. [CrossRef] [MathSciNet] [Google Scholar]
  5. M.R. Baer and J.W. Nunziato, A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiphase Flow 12 (1986) 861–889. [Google Scholar]
  6. C. Berthon, F. Coquel and P.G. LeFloch, Why many theories of shock waves are necessary: kinetic relations for non-conservative systems, in vol. 142 of Proc. R. Soc. Edinburgh, Section: A Mathematics (2012) 1–37. [Google Scholar]
  7. F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2004). [Google Scholar]
  8. F. Bouchut and F. James, Duality solutions for pressureless gases, monotone scalar conservation laws and uniqueness. Commun. Partial Differ. Eqs. 24 (1999) 2173–2189. [CrossRef] [MathSciNet] [Google Scholar]
  9. B. Boutin, F. Coquel and P.G. LeFloch, Coupling nonlinear hyperbolic equations (iii). A regularization method based on thick interfaces. SIAM J. Numer. Anal. 51 (2013) 1108–1133. [CrossRef] [Google Scholar]
  10. C. Chalons, F. Coquel, S. Kokh and N. Spillane, Large time-step numerical scheme for the seven-equation model of compressible two-phase flows, in vol. 4 of Springer Proceedings in Mathematics, FVCA 6 (2011) 225–233. [Google Scholar]
  11. G-Q. Chen, C.D. Levermore and T-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy. Commun. Pure Appl. Math. 47 (1994) 787–830. [CrossRef] [MathSciNet] [Google Scholar]
  12. F. Coquel, T. Gallouët, J.-M. Hérard and N. Seguin, Closure laws for a two-fluid two pressure model. C. R. Acad. Sci. I-334 (2002) 927–932. [Google Scholar]
  13. F. Coquel, E. Godlewski, B. Perthame, A. In and P. Rascle, Some new Godunov and relaxation methods for two-phase flow problems, in Godunov methods (Oxford, 1999). Kluwer/Plenum, New York (2001) 179–188. [Google Scholar]
  14. F. Coquel, E. Godlewski and N. Seguin, Relaxation of fluid systems. Math. Models Methods Appl. Sci. 22 (2012). [Google Scholar]
  15. F. Coquel, J.-M. Hérard and K. Saleh, A splitting method for the isentropic Baer-Nunziato two-phase flow model. ESAIM: Proc., 38 (2012) 241–256. [CrossRef] [EDP Sciences] [Google Scholar]
  16. F. Coquel, J.-M. Hérard, K. Saleh and N. Seguin, Two properties of two-velocity two-pressure models for two-phase flows. Commun. Math. Sci. (2013) 11. [Google Scholar]
  17. F. Coquel, K. Saleh and N. Seguin, A Robust and Entropy-Satisfying Numerical Scheme for Fluid Flows in Discontinuous Nozzles. (2013). [Google Scholar]
  18. V. Deledicque and M.V. Papalexandris, A conservative approximation to compressible two-phase flow models in the stiff mechanical relaxation limit. J. Comput. Phys. 227 (2008) 9241–9270. [CrossRef] [Google Scholar]
  19. M. Dumbser, A. Hidalgo, M. Castro, C. Parés and E.F. Toro, FORCE schemes on unstructured meshes II: Non-conservative hyperbolic systems. Comput. Methods Appl. Mech. Engrg. 199 (2010) 625–647. [Google Scholar]
  20. P. Embid and M. Baer, Mathematical analysis of a two-phase continuum mixture theory. Contin. Mech. Thermodyn. 4 (1992) 279–312. [CrossRef] [MathSciNet] [Google Scholar]
  21. T. Gallouët, J.-M. Hérard and N. Seguin, Numerical modeling of two-phase flows using the two-fluid two-pressure approach. Math. Models Methods Appl. Sci. 14 (2004) 663–700. [CrossRef] [MathSciNet] [Google Scholar]
  22. S. Gavrilyuk and R. Saurel, Mathematical and numerical modeling of two-phase compressible flows with micro-inertia. J. Comput. Phys. 175 (2002) 326–360. [Google Scholar]
  23. P. Goatin and P.G. LeFloch, The Riemann problem for a class of resonant hyperbolic systems of balance laws. Ann. Institut. Henri Poincaré Anal. Non Linéaire 21 (2004) 881–902. [Google Scholar]
  24. E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, in vol. 118 of Appl. Math. Sci. Springer-Verlag, New York (1996). [Google Scholar]
  25. B. Hanouzet and R. Natalini, Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Arch. Rational Mech. Anal. 169 (2003) 89–117. [CrossRef] [Google Scholar]
  26. A. Harten, P.D. Lax and B. van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25 (1983) 35–61. [Google Scholar]
  27. J.-M. Hérard and O. Hurisse, A fractional step method to compute a class of compressible gas-luiquid flows. Comput. Fluids. Int. J. 55 (2012) 57–69. [CrossRef] [Google Scholar]
  28. E. Isaacson and B. Temple, Convergence of the 2 × 2 Godunov method for a general resonant nonlinear balance law. SIAM J. Appl. Math. 55 (1995) 625–640. [CrossRef] [MathSciNet] [Google Scholar]
  29. A.K. Kapila, S.F. Son, J.B. Bdzil, R. Menikoff and D.S. Stewart, Two-phase modeling of DDT: Structure of the velocity-relaxation zone. Phys. Fluids 9 (1997) 3885–3897. [Google Scholar]
  30. S. Kawashima and W.-A. Yong, Dissipative structure and entropy for hyperbolic systems of balance laws. Archive for Rational Mech. Anal. 174 (2004) 345–364. [CrossRef] [Google Scholar]
  31. P.G. LeFloch, Shock waves for nonlinear hyperbolic systems in nonconservative form. Preprint 593, IMA, Minneapolis (1991). [Google Scholar]
  32. Y. Liu, Ph.D. thesis. Université Aix-Marseille, to appear in (2013). [Google Scholar]
  33. L. Sainsaulieu, Contribution à la modélisation mathématique et numérique des écoulements diphasiques constitués d’un nuage de particules dans un écoulement de gaz. Thèse d’habilitation à diriger des recherches. Université Paris VI (1995). [Google Scholar]
  34. K. Saleh, Analyse et Simulation Numérique par Relaxation d’Ecoulements Diphasiques Compressibles. Contribution au Traitement des Phases Evanescentes. Ph.D. thesis. Université Pierre et Marie Curie, Paris VI (2012). [Google Scholar]
  35. R. Saurel and R. Abgrall, A multiphase godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150 (1999) 425–467. [Google Scholar]
  36. D.W. Schwendeman, C.W. Wahle and A.K. Kapila, The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow. J. Comput. Phys. 212 (2006) 490–526. [CrossRef] [MathSciNet] [Google Scholar]
  37. M.D. Thanh, D. Kröner and C. Chalons, A robust numerical method for approximating solutions of a model of two-phase flows and its properties. Appl. Math. Comput. 219 (2012) 320–344. [CrossRef] [Google Scholar]
  38. M.D. Thanh, D. Kröner and N.T. Nam, Numerical approximation for a Baer–Nunziato model of two-phase flows. Appl. Numer. Math. 61 (2011) 702–721. [CrossRef] [Google Scholar]
  39. S.A. Tokareva and E.F. Toro, HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow. J. Comput. Phys. 229 (2010) 3573–3604. [CrossRef] [Google Scholar]
  40. U.S. NRC: Glossary, Departure from Nucleate Boiling (DNB). [Google Scholar]
  41. U.S. NRC: Glossary, Loss of Coolant Accident (LOCA). [Google Scholar]
  42. W-A. Yong, Entropy and global existence for hyperbolic balance laws. Arch. Rational Mech. Anal. 172 (2004) 247–266. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you