Volume 48, Number 2, March-April 2014
Multiscale problems and techniques
Page(s) 347 - 386
Published online 07 February 2014
  1. A. Anantharaman, R. Costaouec, C. Le Bris, F. Legoll and F. Thomines, Introduction to numerical stochastic homogenization and the related computational challenges: some recent developments. In vol. 22 of Lect. Not. Ser., edited by W. Bao and Q. Du. Institute for Mathematical Sciences, National University of Singapore, (2011) 197–272. [Google Scholar]
  2. G. Bal, J. Garnier, Y. Gu and W. Jing, Corrector theory for elliptic equations with long-range correlated random potential. Asymptot. Anal. 77 (2012) 123–145. [MathSciNet] [Google Scholar]
  3. G. Bal, J. Garnier, S. Motsch and V. Perrier, Random integrals and correctors in homogenization. Asymptot. Anal. 59 (2008) 1–26. [MathSciNet] [Google Scholar]
  4. J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63 (1977) 337–403. [Google Scholar]
  5. A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures, vol. 5 of Studi. Math. Appl. North-Holland Publishing Co., Amsterdam-New York (1978). [Google Scholar]
  6. P. Billingsley, Convergence of Probability Measures. John Wiley & Sons Inc (1968). [Google Scholar]
  7. X. Blanc, C. Le Bris and P.-L. Lions, Une variante de la théorie de l’homogénéisation stochastique des opérateurs elliptiques [A variant of stochastic homogenization theory for elliptic operators]. C. R. Acad. Sci. Série I 343 (2006) 717–724. [Google Scholar]
  8. X. Blanc, C. Le Bris and P.-L. Lions, Stochastic homogenization and random lattices. J. Math. Pures Appl. 88 (2007) 34–63. [CrossRef] [Google Scholar]
  9. A. Bourgeat and A. Piatnitski, Estimates in probability of the residual between the random and the homogenized solutions of one-dimensional second-order operator. Asymptot. Anal. 21 (1999) 303–315. [MathSciNet] [Google Scholar]
  10. A. Bourgeat and A. Piatnitski, Approximation of effective coefficients in stochastic homogenization. Ann Inst. Henri Poincaré – PR 40 (2004) 153–165. [Google Scholar]
  11. D. Cioranescu and P. Donato, An introduction to homogenization, vol. 17 of Oxford Lect. Ser. Math. Appl. Oxford University Press, New York (1999). [Google Scholar]
  12. R. Costaouec, C. Le Bris and F. Legoll, Approximation numérique d’une classe de problèmes en homogénéisation stochastique [Numerical approximation of a class of problems in stochastic homogenization]. C. R. Acad. Sci. Série I 348 (2010) 99–103. [Google Scholar]
  13. B. Engquist and P.E. Souganidis, Asymptotic and numerical homogenization. Acta Numerica 17 (2008) 147–190. [Google Scholar]
  14. D. Henao and C. Mora-Corral, Invertibility and weak continuity of the determinant for the modelling of cavitation and fracture in nonlinear elasticity. Arch. Ration. Mech. Anal. 197 (2010) 619–655. [Google Scholar]
  15. V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of differential operators and integral functionals. Springer-Verlag (1994). [Google Scholar]
  16. U. Krengel, Ergodic theorems, vol. 6 of De Gruyter Studies in Mathematics. De Gruyter (1985). [Google Scholar]
  17. G.C. Papanicolaou and S.R.S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, in Proc. Colloq. on Random Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory (1979). In vol. 10 of Colloquia Mathematica Societatis Janos Bolyai, edited by J. Fritz, J.L. Lebaritz and D. Szasz. North-Holland (1981) 835–873. [Google Scholar]
  18. A.N. Shiryaev, Probability, vol. 95 of Graduate Texts in Mathematics. Springer (1984). [Google Scholar]
  19. A.A. Tempel’man, Ergodic theorems for general dynamical systems. Trudy Moskov. Mat. Obsc. 26 (1972) 94–132. [Google Scholar]
  20. V.V. Yurinskii, Averaging of symmetric diffusion in random medium. Sibirskii Mat. Zh. 27 (1986) 167–180. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you