Issue
ESAIM: M2AN
Volume 48, Number 2, March-April 2014
Multiscale problems and techniques
Page(s) 387 - 409
DOI https://doi.org/10.1051/m2an/2013112
Published online 20 February 2014
  1. G. Allaire and R. Brizzi, A multiscale finite element method for numerical homogenization. Multiscale Model. Simul. 4 (2005) 790–812. (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  2. T. Arbogast, Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems. SIAM J. Numer. Anal. 42 (2004) 576–598. [CrossRef] [MathSciNet] [Google Scholar]
  3. I. Babuska, Homogenization and its applications, mathematical and computational problems, Numerical Solutions of Partial Differential Equations-III, edited by B. Hubbard (SYNSPADE 1975, College Park, MD, May 1975). Academic Press, New York (1976) 89–116. [Google Scholar]
  4. I. Babuska, Solution of interface by homogenization. I, II, III. SIAM J. Math. Anal. 7 (1976) 603–634, 635–645. [CrossRef] [MathSciNet] [Google Scholar]
  5. I. Babuska, Solution of interface by homogenization. I, II, III. SIAM J. Math. Anal. 8 (1977) 923–937. [CrossRef] [MathSciNet] [Google Scholar]
  6. G. Bal, Central limits and homogenization in random media. Multiscale Model. Simul. 7 (2008) 677–702. [CrossRef] [Google Scholar]
  7. G. Bal, J. Garnier, Y. Gu and W. Jing, Corrector theory for elliptic equations with oscillatory and random potentials with long range correlations. Asymptot. Anal. 77 (2012) 123–145. [MathSciNet] [Google Scholar]
  8. G. Bal, J. Garnier, S. Motsch and V. Perrier, Random integrals and correctors in homogenization. Asymptot. Anal. 59 (2008) 1–26. [MathSciNet] [Google Scholar]
  9. G. Bal and W. Jing, Corrector theory for MsFEM and HMM in random media. Multiscale Model. Simul. 9 (2011) 1549–1587. [CrossRef] [Google Scholar]
  10. G. Bal and K. Ren, Physics-based models for measurement correlations: application to an inverse Sturm-Liouville problem. Inverse Problems 25 (2009) 055006, 13. [CrossRef] [Google Scholar]
  11. L. Berlyand and H. Owhadi, Flux norm approach to finite dimensional homogenization approximations with non-separated scales and high contrast. Arch. Ration. Mech. Anal. 198 (2010) 677–721. [CrossRef] [Google Scholar]
  12. A. Bourgeat and A. Piatnitski, Estimates in probability of the residual between the random and the homogenized solutions of one-dimensional second-order operator. Asymptot. Anal. 21 (1999) 303–315. [MathSciNet] [Google Scholar]
  13. P.G. Ciarlet, The finite element method for elliptic problems, in vol. 4 of Stud. Math. Appl. North-Holland Publishing Co., Amsterdam (1978). [Google Scholar]
  14. P. Doukhan, Mixing, Properties and examples, in vol. 85 of Lect. Notes Stat. Springer-Verlag, New York (1994). [Google Scholar]
  15. W.E.B. Engquist, X. Li, W. Ren and E. Vanden-Eijnden, Heterogeneous multiscale methods: a review. Commun. Comput. Phys. 2 (2007) 367–450. [Google Scholar]
  16. W.E.P. Ming and P. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems. J. Amer. Math. Soc. 18 (2005) 121–156 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  17. R. Figari, E. Orlandi and G. Papanicolaou, Mean field and Gaussian approximation for partial differential equations with random coefficients. SIAM J. Appl. Math. 42 (1982) 1069–1077. [CrossRef] [Google Scholar]
  18. C.I. Goldstein, Variational crimes and L error estimates in the finite element method. Math. Comp. 35 (1980) 1131–1157. [MathSciNet] [Google Scholar]
  19. T.Y. Hou, X.-H. Wu and Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comput. 68 (1999) 913–943. [CrossRef] [MathSciNet] [Google Scholar]
  20. V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of differential operators and integral functionals. Springer-Verlag, New York (1994) [Google Scholar]
  21. D. Khoshnevisan, Multiparameter processes. Springer Monographs in Mathematics. Springer-Verlag, New York (2002).An introduction to random fields. [Google Scholar]
  22. S.M. Kozlov, The averaging of random operators. Mat. Sb. (N.S.) 109 (1979) 188–202, 327. [MathSciNet] [Google Scholar]
  23. E.H. Lieb and M. Loss, Analysis, in vol. 14 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2nd edn. (2001). [Google Scholar]
  24. J. Nolen and G. Papanicolaou, Fine scale uncertainty in parameter estimation for elliptic equations. Inverse Problems 25 (2009) 115021–115022. [CrossRef] [Google Scholar]
  25. H. Owhadi and L. Zhang, Localized bases for finite-dimensional homogenization approximations with nonseparated scales and high contrast. Multiscale Model. Simul. 9 (2011) 1373–1398. [CrossRef] [Google Scholar]
  26. G.C. Papanicolaou and S.R.S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, in Random fields, vol. I, II (Esztergom, 1979). In vol. 27 of Colloq. Math. Soc. János Bolyai. North-Holland, Amsterdam (1981) 835–873. [Google Scholar]
  27. R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element approximations. Math. Comput. 38 (1982) 437–445. [CrossRef] [MathSciNet] [Google Scholar]
  28. M. Reed and B. Simon, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. Academic Press, Harcourt Brace Jovanovich Publishers, New York (1975). [Google Scholar]
  29. R. Scott, Optimal L estimates for the finite element method on irregular meshes. Math. Comput. 30 (1976) 681–697. [Google Scholar]
  30. M.S. Taqqu, Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. Verw. Gebiete 50 (1979) 53–83. [CrossRef] [MathSciNet] [Google Scholar]
  31. L.B. Wahlbin, Maximum norm error estimates in the finite element method with isoparametric quadratic elements and numerical integration. RAIRO Anal. Numér. 12 (1978) 173–202. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you