Free Access
Issue
ESAIM: M2AN
Volume 48, Number 3, May-June 2014
Page(s) 765 - 793
DOI https://doi.org/10.1051/m2an/2013120
Published online 01 April 2014
  1. N. Adams and A. Leonard, Deconvolution of subgrid scales for the simulation of shock-turbulence interaction, in Direct and Large Eddys Simulation III, edited by N.S.P. Voke and L. Kleiser. Kluwer, Dordrecht (1999) 201. [Google Scholar]
  2. N. Adams and S. Stolz, Deconvolution methods for subgrid-scale approximation in large-eddy simulation, Modern Simulation Strategies for Turbulent Flow, edited by R.T. Edwards (2001). [Google Scholar]
  3. N. Adams and S. Stolz, A subgrid-scale deconvolution approach for shock capturing. J. Comput. Phys. 178 (2002) 391–426. [CrossRef] [MathSciNet] [Google Scholar]
  4. G.A. Baker, V.A. Dougalis and O.A. Karakashian, On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations. Math. Comput. 39 (1982) 339–375. [CrossRef] [MathSciNet] [Google Scholar]
  5. D. Barbato, L.C. Berselli and C.R. Grisanti, Analytical and numerical results for the rational large eddy simulation model. J. Math. Fluid Mech. 9 (2007) 44–74. [CrossRef] [MathSciNet] [Google Scholar]
  6. L.C. Berselli, On the large eddy simulation of the Taylor-Green vortex. J. Math. Fluid Mech. 7 (2005) S164–S191. [CrossRef] [Google Scholar]
  7. J.P. Boyd, Two comments on filtering (artificial viscosity) for Chebyshev and Legendre spectral and spectral element methods: preserving boundary conditions and interpretation of the filter as a diffusion. J. Comput. Phys. 143 (1998) 283–288. [CrossRef] [Google Scholar]
  8. S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, vol. 15 of Texts in Applied Mathematics. Springer-Verlag, New York (1994). [Google Scholar]
  9. C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral methods, Evolution to complex geometries and applications to fluid dynamics. Scientific Computation. Springer, Berlin (2007). [Google Scholar]
  10. A. Chorin, Numerical solution for the Navier-Stokes equations. Math. Comput. 22 (1968) 745–762. [CrossRef] [MathSciNet] [Google Scholar]
  11. J. Connors and W. Layton, On the accuracy of the finite element method plus time relaxation. Math. Comput. 79 (2010) 619–648. [CrossRef] [Google Scholar]
  12. A. Dunca, Investigation of a shape optimization algorithm for turbulent flows, tech. rep., Argonne National Lab, report number ANL/MCS-P1101-1003 (2002). Available at http://www-fp.mcs.anl.gov/division/publications/. [Google Scholar]
  13. A. Dunca, Space averaged Navier Stokes equations in the presence of walls. Ph.D. thesis, University of Pittsburgh (2004). [Google Scholar]
  14. A. Dunca and Y. Epshteyn, On the Stolz-Adams deconvolution model for the large-eddy simulation of turbulent flows. SIAM J. Math. Anal. 37 (2006) 1890–1902. [CrossRef] [MathSciNet] [Google Scholar]
  15. E. Emmrich, Error of the two-step BDF for the incompressible Navier-Stokes problem. M2AN: M2AN 38 (2004) 757–764. [CrossRef] [EDP Sciences] [Google Scholar]
  16. V. Ervin, W. Layton and M. Neda, Numerical analysis of a higher order time relaxation model of fluids. Int. J. Numer. Anal. Model. 4 (2007) 648–670. [Google Scholar]
  17. V. Ervin, W. Layton and M. Neda, Numerical analysis of filter based stabilization for evolution equations. SINUM 50 (2012) 2307–2335. [CrossRef] [Google Scholar]
  18. P. Fischer and J. Mullen, Filter-based stabilization of spectral element methods. C. R. Acad. Sci. Paris Sér. I Math. 332 (2001) 265–270. [CrossRef] [MathSciNet] [Google Scholar]
  19. E. Garnier, N. Adams and P. Sagaut, Large eddy simulation for compressible flows. Sci. Comput. Springer, Berlin (2009). [Google Scholar]
  20. V. Girault and P.-A. Raviart, Finite element approximation of the Navier-Stokes equations, in vol. 749 of Lect. Notes Math. Springer-Verlag, Berlin (1979). [Google Scholar]
  21. M.D. Gunzburger, Finite element methods for viscous incompressible flows, A guide to theory, practice, and algorithms. Computer Science and Scientific Computing. Academic Press Inc., Boston, MA (1989). [Google Scholar]
  22. F. Hecht and O. Pironneau, Freefem++, webpage: http://www.freefem.org. [Google Scholar]
  23. J.G. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier-Stokes problem. IV. Error analysis for second-order time discretization. SIAM J. Numer. Anal. 27 (1990) 353–384. [CrossRef] [MathSciNet] [Google Scholar]
  24. V. John, Large eddy simulation of turbulent incompressible flows, Analytical and numerical results for a class of LES models, in vol. 34 of Lect. Notes Comput. Sci. Engrg. Springer-Verlag, Berlin (2004). [Google Scholar]
  25. V. John and W.J. Layton, Analysis of numerical errors in large eddy simulation. SIAM J. Numer. Anal. 40 (2002) 995–1020. [CrossRef] [MathSciNet] [Google Scholar]
  26. W. Layton, Superconvergence of finite element discretization of time relaxation models of advection. BIT 47 (2007) 565–576. [CrossRef] [MathSciNet] [Google Scholar]
  27. W. Layton, The interior error of van Cittert deconvolution is optimal. Appl. Math. 12 (2012) 88–93. [Google Scholar]
  28. W. Layton, C. Manica, M. Neda and L. Rebholz, Helicity and energy conservation and dissipation in approximate deconvolution LES models of turbulence. Adv. Appl. Fluid Mech. 4 (2008) 1–46. [MathSciNet] [Google Scholar]
  29. W. Layton and M. Neda, Truncation of scales by time relaxation. J. Math. Anal. Appl. 325 (2007) 788–807. [CrossRef] [Google Scholar]
  30. W. Layton, L.G. Rebholz and C. Trenchea, Modular nonlinear filter stabilization of methods for higher Reynolds numbers flow. J. Math. Fluid Mech. (2011) 1–30. [Google Scholar]
  31. W. Layton, L. Röhe and H. Tran, Explicitly uncoupled VMS stabilization of fluid flow. Comput. Methods Appl. Mech. Engrg. 200 (2011) 3183–3199. [CrossRef] [MathSciNet] [Google Scholar]
  32. J. Mathew, R. Lechner, H. Foysi, J. Sesterhenn and R. Friedrich, An explicit filtering method for large eddy simulation of compressible flows. Phys. Fluids 15 (2003). [CrossRef] [Google Scholar]
  33. J.S. Mullen and P.F. Fischer, Filtering techniques for complex geometry fluid flows. Commun. Numer. Methods Engrg. 15 (1999) 9–18. [CrossRef] [Google Scholar]
  34. S. Ravindran, Convergence of extrapolated BDF2 finite element schemes for unsteady penetrative convection model. Numer. Funct. Anal. Optim. 33 (2011) 48–79. [CrossRef] [Google Scholar]
  35. P. Rosenau, Extending hydrodynamics via the regularization of the Chapman-Enskog expansion. Phys. Rev. A 40 (1989) 7193. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  36. M. Schäfer and S. Turek, Benchmark computations of laminar flow around cylinder, in Flow Simulation with High-Performance Computers II, vol. 52. Edited by H. EH. Vieweg (1996) 547–566. [Google Scholar]
  37. S. Schochet and E. Tadmor, The regularized Chapman-Enskog expansion for scalar conservation laws. Arch. Rat. Mech. Anal. 119 (1992) 95. [CrossRef] [Google Scholar]
  38. I. Stanculescu, Existence theory of abstract approximate deconvolution models of turbulence. Ann. Univ. Ferrara Sez. VII Sci. Mat. 54 (2008) 145–168. [CrossRef] [MathSciNet] [Google Scholar]
  39. S. Stolz and N. Adams, On the approximate deconvolution procedure for LES. Phys. Fluids, II (1999) 1699–1701. [Google Scholar]
  40. S. Stolz, N. Adams and L. Kleiser, An approximate deconvolution model for large eddy simulation with application to wall-bounded flows. Phys. Fluids 13 (2001) 997–1015. [CrossRef] [Google Scholar]
  41. S. Stolz, N. Adams and L. Kleiser, The approximate deconvolution model for LES of compressible flows and its application to shock-turbulent-boundary-layer interaction. Phys. Fluids 13 (2001) 2985. [CrossRef] [Google Scholar]
  42. S. Stolz, N. Adams and L. Kleiser, The approximate deconvolution model for compressible flows: isotropic turbulence and shock-boundary-layer interaction,Advances in LES of Complex Flows, in vol. 65 of Fluid Mechanics and Its Applications. Edited by R. Friedrich and W. Rodi. Springer, Netherlands (2002) 33–47. [Google Scholar]
  43. D. Tafti, Comparison of some upwind-biased high-order formulations with a second-order central-difference scheme for time integration of the incompressible Navier-Stokes equations. Comput. Fluids 25 (1996) 647–665. [CrossRef] [MathSciNet] [Google Scholar]
  44. G. Taylor, On decay of vortices in a viscous fluid. Phil. Mag. 46 (1923) 671–674. [CrossRef] [Google Scholar]
  45. G.I. Taylor and A.E. Green, Mechanism of the production of small eddies from large ones, Proc. Royal Soc. London Ser. A 158 (1937) 499–521. [NASA ADS] [CrossRef] [Google Scholar]
  46. M. Visbal and D. Rizzetta, Large-eddy simulation on general geometries using compact differencing and filtering schemes, AIAA Paper (2002) 2002–288. [Google Scholar]
  47. X. Wang, An efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier–Stokes equations. Numer. Math. 121 (2012) 753–779. [CrossRef] [MathSciNet] [Google Scholar]
  48. E. Zeidler, Applied functional analysis, vol. 108 of Appl. Math. Sci. Springer-Verlag, New York (1995). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you