Free Access
Issue
ESAIM: M2AN
Volume 48, Number 3, May-June 2014
Page(s) 795 - 813
DOI https://doi.org/10.1051/m2an/2013121
Published online 01 April 2014
  1. J.-D. Benamou and B. Desprès, A domain decomposition method for the Helmholtz equation and related optimal control problems. J. Comput. Phys. 136 (1997) 68–82. [Google Scholar]
  2. K. Burrage, C. Dyke and B. Pohl, On the performance of parallel waveform relaxations for differential systems. Appl. Numer. Math. 20 (1996) 39–55. [CrossRef] [Google Scholar]
  3. Th. Cazenave and A. Harau, An introduction to semilinear evolution equations, vol. 13 of Oxford Lect. Ser. Math. Applic. The Clarendon Press Oxford University Press, New York (1998). Translated from the 1990 French original by Yvan Martel and revised by the authors. [Google Scholar]
  4. E.B. Davies, Heat kernels and spectral theory, in vol. 92 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1989). [Google Scholar]
  5. S. Descombes, V. Dolean and M.J. Gander, Schwarz waveform relaxation methods for systems of semi-linear reaction-diffusion equations, in Domain Decomposition Methods (2009). [Google Scholar]
  6. L.C. Evans, Partial differential equations, Graduate Studies in Mathematics, in vol. 19 of Amer. Math. Soc. Providence, RI (1998). [Google Scholar]
  7. A. Friedman, Partial differential equations of parabolic type. Prentice-Hall Inc., Englewood Cliffs, N.J (1964). [Google Scholar]
  8. M.J. Gander and L. Halpern. Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems. SIAM J. Numer. Anal. 45 (2007) 666–697. [CrossRef] [MathSciNet] [Google Scholar]
  9. M.J. Gander, L. Halpern and F. Nataf, Optimal convergence for overlapping and non-overlapping Schwarz waveform relaxation, in Eleventh International Conference on Domain Decomposition Methods (London, 1998). DDM.org, Augsburg (1999) 27–36. [Google Scholar]
  10. M.J. Gander, A waveform relaxation algorithm with overlapping splitting for reaction diffusion equations. Numer. Linear Algebra Appl. 6 (1999) 125–145. Czech-US Workshop in Iterative Methods and Parallel Computing, Part 2 (Milovy 1997). [CrossRef] [MathSciNet] [Google Scholar]
  11. M.J. Gander, L. Halpern and F. Nataf, Optimized Schwarz methods. In Domain decomposition methods in sciences and engineering (Chiba, 1999). DDM.org, Augsburg (2001) 15–27. [Google Scholar]
  12. M.J. Gander and A.M. Stuart, Space time continuous analysis of waveform relaxation for the heat equation. SIAM J. 19 (1998) 2014–2031. [Google Scholar]
  13. M.J. Gander and H. Zhao, Overlapping Schwarz waveform relaxation for the heat equation in n dimensions. BIT 42 (2002) 779–795. [CrossRef] [MathSciNet] [Google Scholar]
  14. E. Giladi and H.B. Keller, Space-time domain decomposition for parabolic problems. Numer. Math. 93 (2002) 279–313. [CrossRef] [MathSciNet] [Google Scholar]
  15. G.M. Lieberman. Second order parabolic differential equations. World Scientific Publishing Co. Inc., River Edge, NJ (1996). [Google Scholar]
  16. P.-L. Lions, On the Schwarz alternating method I. In First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Paris, 1987). SIAM, Philadelphia, PA (1988) 1–42. [Google Scholar]
  17. P.-L. Lions, On the Schwarz alternating method II. Stochastic interpretation and order properties, in Domain decomposition methods (Los Angeles, CA, 1988). SIAM, Philadelphia, PA (1989) 47–70. [Google Scholar]
  18. P.-L. Lions, On the Schwarz alternating method III. A variant for nonoverlapping subdomains, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations (Houston, TX 1989). SIAM, Philadelphia, PA (1990) 202–223. [Google Scholar]
  19. S.H. Lui, On Schwarz methods for monotone elliptic PDEs, in Domain decomposition methods in sciences and engineering (Chiba, 1999). DDM.org, Augsburg (2001) 55–62. [Google Scholar]
  20. S.-H. Lui, On monotone iteration and Schwarz methods for nonlinear parabolic PDEs. J. Comput. Appl. Math. 161 (2003) 449–468. [CrossRef] [Google Scholar]
  21. P. Quittner and Ph. Souplet, Superlinear parabolic problems, Blow-up, global existence and steady states. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel (2007). [Google Scholar]
  22. M.-B. Tran, Parallel Schwarz waveform relaxation method for a semilinear heat equation in a cylindrical domain. C. R. Math. Acad. Sci. Paris 348 (2010) 795–799. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you