Free Access
Volume 48, Number 3, May-June 2014
Page(s) 859 - 874
Published online 22 April 2014
  1. S. Amdouni, K. Mansouri, Y. Renard, M. Arfaoui and M. Moakher, Numerical convergence and stability of mixed formulation with X-FEM cut-off. Eur. J. Comput. Mech. 21 (2012) 160–73. [Google Scholar]
  2. S. Amdouni, M. Moakher and Y. Renard, A local projection stabilization of fictitious domain method for elliptic boundary value problems. Preprint, hal-00713115 (2012) [Google Scholar]
  3. Ph. Angot, A fictitious domain model for the Stokes/Brinkman problem with jump embedded boundary conditions. C.R. Math. Acad. Sci. Paris 348 (2010) 697–702. [Google Scholar]
  4. D.N. Arnold, F. Brezzi and M. Fortin, A stable finite element for the Stokes equation. Calcolo 21 (1984) 337–344. [Google Scholar]
  5. R. Becker and M. Braack, A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38 (2001) 173–199. [CrossRef] [MathSciNet] [Google Scholar]
  6. R. Becker, E. Burman and P. Hansbo, A finite element time relaxation method. C.R. Math. Acad. Sci. Paris 349 (2011) 353–356. [CrossRef] [MathSciNet] [Google Scholar]
  7. R. Becker, E. Burman and P. Hansbo, A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity. Comput. Methods Appl. Mech. Engrg. 198 (2009) 3352–3360. [CrossRef] [MathSciNet] [Google Scholar]
  8. R. Becker and P. Hansbo, A simple pressure stabilization method for the Stokes equation. Commun. Numer. Methods Eng. 24 (2008) 1421–1430. [CrossRef] [Google Scholar]
  9. M. Bercovier and O. Pironneau, Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer. Math. 33 (1979) 211–224. [CrossRef] [MathSciNet] [Google Scholar]
  10. S. Bertoluzza, M. Ismail and B. Maury, Analysis of the fully discrete fat boundary method. Numer. Math. 118 (2011) 49–77. [CrossRef] [MathSciNet] [Google Scholar]
  11. D. Boffi, F. Brezzi, L. Demkowicz, R. Durán, R. Falk and M. Fortin, Mixed finite elements, compatibility conditions, and applications. Lectures given at the C.I.M.E. Summer School held in Cetraro 2006, edited by Boffi and Lucia Gastaldi. In vol. 1939 Lect. Notes Math. Springer-Verlag, Berlin (2008). [Google Scholar]
  12. F. Brezzi and J. Pitkäranta, On the stabilization of finite element approximations of the Stokes equations, in Efficient solutions of elliptic systems (Kiel, 1984), vol. 10 of Notes Numer. Fluid Mech. Vieweg, Braunschweig (1984) 11–19. [Google Scholar]
  13. F. Brezzi and R. Falk, Stability of higher-order Hood-Taylor methods. SIAM J. Numer. Anal. 28 (1991) 581–590. [CrossRef] [MathSciNet] [Google Scholar]
  14. E. Burman and P. Hansbo, Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl. Numer. Math. 62 (2012) 328–341. [CrossRef] [MathSciNet] [Google Scholar]
  15. E. Burman and P. Hansbo, Edge stabilization for the generalized Stokes problem: a continuous interior penalty method. Comput. Methods Appl. Mech. Engrg. 195 (2006) 2393–2410. [CrossRef] [MathSciNet] [Google Scholar]
  16. E. Burman, Pressure projection stabilizations for Galerkin approximations of Stokes’ and Darcy’s problem. Numer. Methods Part. Differ. Eqs. 24 (2008) 127–143. [Google Scholar]
  17. E. Burman, Ghost penalty. C.R. Math. Acad. Sci. Paris 348 (2010) 1217–1220. [Google Scholar]
  18. R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, vol. 2. Functional and Variational Methods. Springer-Verlag, Berlin (1988) [Google Scholar]
  19. C. Dohrmann and P. Bochev, A stabilized finite element method for the Stokes problem based on polynomial pressure projections. Int. J. Numer. Methods Fluids 46 (2004) 183–201. [CrossRef] [Google Scholar]
  20. V. Girault, R. Glowinski and T. Pan, A fictitious–domain method with distributed multiplier for the Stokes problem, in Appl. Nonlinear Anal. Kluwer/Plenum, New York (1999) 159–174. [Google Scholar]
  21. A. Hansbo and P. Hansbo, An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Engrg. 47 (2009) 5537–5552. [Google Scholar]
  22. J. Haslinger and Y. Renard, A new fictitious domain approach inspired by the extended finite element method. SIAM J. Numer. Anal. 191 (2002) 1474–1499. [Google Scholar]
  23. G. Legrain, N. Moës and A. Huerta, Stability of incompressible formulations enriched with X-FEM. Comput. Methods Appl. Mech. Engrg. 197 (2008) 1835–1849. [CrossRef] [MathSciNet] [Google Scholar]
  24. J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9–15. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you