Free Access
Issue |
ESAIM: M2AN
Volume 48, Number 3, May-June 2014
|
|
---|---|---|
Page(s) | 875 - 894 | |
DOI | https://doi.org/10.1051/m2an/2013124 | |
Published online | 24 April 2014 |
- C. Bernardi, C. Canuto and Y. Maday, Generalized inf-sup conditions for Chebyshev spectral approximation of the Stokes problem. SIAM J. Numer. Anal. 25 (1988) 1237–1271. [CrossRef] [MathSciNet] [Google Scholar]
- C. Bernardi and R. Verfürth, A posteriori error analysis of the fully discretized time-dependent Stokes equations. ESAIM: M2AN 38 (2004) 437–455. [CrossRef] [EDP Sciences] [Google Scholar]
- A. Cohen, W. Dahmen and R. DeVore, Adaptive wavelet methods for elliptic operator equations – Convergence rates. Math. Comput. 70 (2001) 27–75. [CrossRef] [MathSciNet] [Google Scholar]
- N.G. Chegini and R.P. Stevenson, Adaptive wavelets schemes for parabolic problems: Sparse matrices and numerical results. SIAM J. Numer. Anal. 49 (2011) 182–212. [CrossRef] [Google Scholar]
- M. Dauge, Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. I. Linearized equations. SIAM J. Math. Anal. 20 (1989) 74–97. [CrossRef] [MathSciNet] [Google Scholar]
- R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for science and technology. Evolution problems I. Vol. 5. Springer-Verlag, Berlin (1992). [Google Scholar]
- G. de Rham, Differentiable manifolds. Forms, currents, harmonic forms. Vol. 266 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Translated from the French by F.R. Smith, With an introduction by S.S. Chern. Springer-Verlag, Berlin (1984). [Google Scholar]
- R.E. Ewing and R.D. Lazarov, Approximation of parabolic problems on grids locally refined in time and space, in vol. 14 of Proc. of the Third ARO Workshop on Adaptive Methods for Partial Differential Equations. Troy, NY 1992 (1994) 199–211. [Google Scholar]
- I. Faille, F. Nataf, F. Willien and S. Wolf, Two local time stepping schemes for parabolic problems. In vol. 29, Multiresolution and adaptive methods for convection-dominated problems. ESAIM Proc. EDP Sciences, Les Ulis (2009) 58–72. [Google Scholar]
- M.D. Gunzburger and A. Kunoth. Space-time adaptive wavelet methods for control problems constrained by parabolic evolution equations. SIAM J. Control. Optim. 49 (2011) 1150–1170. [Google Scholar]
- R.B. Kellogg and J.E. Osborn, A regularity result for the Stokes in a convex polygon. J. Funct. Anal. 21 (1976) 397–431. [CrossRef] [Google Scholar]
- S.G. Kreĭn, Yu.Ī. Petunīn and E.M. Semënov, Interpolation of linear operators. In vol. 54 of Translations of Mathematical Monographs. Translated from the Russian by J. Szűcs. American Mathematical Society, Providence, R.I. (1982). [Google Scholar]
- J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. In vol. I. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, New York (1972). [Google Scholar]
- J. Nečas, Les méthodes directes en théorie des équations elliptiques. Masson et Cie, Paris (1967). [Google Scholar]
- R.A. Nicolaides, Existence, uniqueness and approximation for generalized saddle point problems. SIAM J. Numer. Anal. 19 (1982) 349–357. [CrossRef] [MathSciNet] [Google Scholar]
- J. Pousin and J. Rappaz, Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems. Numer. Math. 69 (1994) 213–231. [CrossRef] [MathSciNet] [Google Scholar]
- V. Savcenco, Multirate Numerical Integration For Ordinary Differential Equations. Ph.D. thesis. Universiteit van Amsterdam (2008). [Google Scholar]
- Ch. Schwab and R.P. Stevenson, A space-time adaptive wavelet method for parabolic evolution problems. Math. Comput. 78 (2009) 1293–1318. [CrossRef] [Google Scholar]
- E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, N.J. (1970). [Google Scholar]
- R.P. Stevenson, Adaptive wavelet methods for linear and nonlinear least squares problems. Technical report. KdVI, UvA Amsterdam. Submitted (2013). [Google Scholar]
- R.P. Stevenson, Divergence-free wavelets on the hypercube: Free-slip boundary conditions, and applications for solving the instationary Stokes equations. Math. Comput. 80 (2011) 1499–1523. [CrossRef] [Google Scholar]
- R.P. Stevenson, Divergence-free wavelets on the hypercube: General boundary conditions. ESI preprint 2417. Erwin Schrödinger Institute, Vienna. Submitted (2013). [Google Scholar]
- R. Temam, Navier-Stokes equations. Theory and numerical analysis, with an appendix by F. Thomasset. In vol. 2 of Stud. Math. Appl. North-Holland Publishing Co., Amsterdam, revised edition (1979). [Google Scholar]
- J. Wloka, Partielle Differentialgleichungen, Sobolevräume und Randwertaufgaben. Edited by B.G. Teubner, Stuttgart (1982). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.