Free Access
Volume 48, Number 3, May-June 2014
Page(s) 919 - 942
Published online 24 April 2014
  1. P. Alart and A. Curnier, A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Eng. 92 (1991) 353–375. [Google Scholar]
  2. C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems. John Wiley, Chichester (1984). [Google Scholar]
  3. M. Barboteu and M. Sofonea, Modelling and analysis of the unilateral contact of a piezoelectric body with a conductive support. J. Math. Anal. Appl. 358 (2009) 110–124. [CrossRef] [Google Scholar]
  4. M. Barboteu and M. Sofonea, Analysis and numerical approach of a piezoelectric contact problem. Annals of the Academy of Romanian Scientists, Series on Mathematics and its Applications 1 (2009) 7–31. [MathSciNet] [Google Scholar]
  5. D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 3rd edn. Cambridge University Press, Cambridge (2007). [Google Scholar]
  6. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, 3rd edn. Springer-Verlag, New York (2008). [Google Scholar]
  7. H. Brezis, Equations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier 18 (1968) 115–175. [CrossRef] [MathSciNet] [Google Scholar]
  8. P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysis, vol. II, edited by P.G. Ciarlet and J.-L. Lions. North-Holland, Amsterdam (1991) 17–351. [Google Scholar]
  9. G. Duvaut and J.L. Lions, Inequalities in Mechanics and Physics. Springer-Verlag, Berlin (1976). [Google Scholar]
  10. R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer-Verlag, New York (1984). [Google Scholar]
  11. C. Eck, J. Jarušek and M. Krbeč, Unilateral Contact Problems: Variational Methods and Existence Theorems, vol. 270, Pure Appl. Math. Chapman/CRC Press, New York (2005). [Google Scholar]
  12. W. Han and B.D. Reddy, Computational plasticity: the variational basis and numerical analysis. Comput. Mech. Adv. 2 (1995) 283–400. [MathSciNet] [Google Scholar]
  13. W. Han and B.D. Reddy, Plasticity: Mathematical Theory and Numerical Analysis, 2nd edn. Springer-Verlag, New York (2013). [Google Scholar]
  14. W. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. In vol. 30, Stud. Adv. Math. American Mathematical Society, Providence, RI-International Press, Sommerville, MA (2002). [Google Scholar]
  15. J. Haslinger, M. Miettinen and P.D. Panagiotopoulos, Finite Element Method for Hemivariational Inequalities. Theory, Methods Appl. Kluwer Academic Publishers, Boston, Dordrecht, London (1999). [Google Scholar]
  16. I. Hlaváček, J. Haslinger, J. Necǎs and J. Lovíšek, Solution of Variational Inequalities in Mechanics. Springer-Verlag, New York (1988). [Google Scholar]
  17. H.B. Khenous, P. Laborde, and Y. Renard, On the discretization of contact problems in elastodynamics. Lect. Notes Appl. Comput. Mech. 27 (2006) 31–38. [CrossRef] [Google Scholar]
  18. H.B. Khenous, J. Pommier and Y. Renard, Hybrid discretization of the Signorini problem with Coulomb friction. Theoretical aspects and comparison of some numerical solvers. Appl. Numer. Math. 56 (2006) 163–192. [CrossRef] [Google Scholar]
  19. N. Kikuchi and J.T. Oden, Theory of variational inequalities with applications to problems of flow through porous media. Int. J. Engng. Sci. 18 (1980) 1173–1284. [CrossRef] [Google Scholar]
  20. N. Kikuchi and T.J. Oden, Contact Problems in Elasticity. SIAM, Philadelphia (1988). [Google Scholar]
  21. D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications. In vol. 31, Classics Appl. Math. SIAM, Philadelphia (2000). [Google Scholar]
  22. T. Laursen, Computational contact and impact mechanics. Springer, Berlin (2002). [Google Scholar]
  23. J.A.C. Martins and M.D.P. Monteiro Marques, eds., Contact Mechanics. Kluwer, Dordrecht (2002). [Google Scholar]
  24. E.S. Mistakidis and P.D. Panagiotopulos, Numerical treatment of problems involving nonmonotone boundary or stress-strain laws. Comput. Structures 64 (1997) 553–565. [CrossRef] [Google Scholar]
  25. E.S. Mistakidis and P.D. Panagiotopulos, The search for substationary points in the unilateral contact problems with nonmonotone friction. Math. Comput. Modelling 28 (1998) 341–358. [CrossRef] [MathSciNet] [Google Scholar]
  26. P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications. Birkhäuser, Boston, 1985. [Google Scholar]
  27. M. Raous, M. Jean and J.J. Moreau, Contact Mechanics. Plenum Press, New York (1995). [Google Scholar]
  28. M. Shillor, ed., Recent advances in contact mechanics, Special issue of Math. Comput. Modelling 28 (4–8) (1998). [Google Scholar]
  29. M. Shillor, M. Sofonea and J.J. Telega, Models and Analysis of Quasistatic Contact. Variational Methods. In vol. 655, Lect. Notes Phys. Springer, Berlin (2004). [Google Scholar]
  30. M. Sofonea, C. Avramescu and A. Matei, A fixed point result with applications in the study of viscoplastic frictionless contact problems. Commun. Pure Appl. Anal. 7 (2008) 645–658. [CrossRef] [MathSciNet] [Google Scholar]
  31. M. Sofonea, W. Han and M. Shillor, Analysis and Approximation of Contact Problems with Adhesion or Damage. Chapman & Hall/CRC, New York (2006). [Google Scholar]
  32. M. Sofonea and A. Matei, Variational Inequalities with Applications. A Study of Antiplane Frictional Contact Problems. vol. 18, Adv. Mech. Math. Springer, New York (2009). [Google Scholar]
  33. M. Sofonea and A. Matei, History-dependent quasivariational inequalities arising in contact mechanics. Eur. J. Appl. Math. 22 (2011) 471–491. [CrossRef] [Google Scholar]
  34. C.H. Scholz, The Mechanics of Earthquakes and Faulting. Cambridge University Press (1990). [Google Scholar]
  35. M.A. Tzaferopoulos, E.S. Mistakidis, C.D. Bisbos, and P.D. Panagiotopulos, Comparison of two methods for the solution of a class of nonconvex energy problems using convex minimization algorithms. Comput. Struct. 57 (1995) 959–971. [CrossRef] [Google Scholar]
  36. P. Wriggers and U. Nackenhorst, eds., Analysis and Simulation of Contact Problems. In vol. 27, Lect. Notes Appl. Comput. Mech. Springer, Berlin (2006). [Google Scholar]
  37. P. Wriggers, Computational Contact Mechanics. Wiley, Chichester (2002). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you