Free Access
Issue |
ESAIM: M2AN
Volume 48, Number 4, July-August 2014
|
|
---|---|---|
Page(s) | 955 - 968 | |
DOI | https://doi.org/10.1051/m2an/2013129 | |
Published online | 30 June 2014 |
- D.N. Arnold, F. Brezzi and M. Fortin, A stable finite element for the Stokes equations. CALCOLO 21 (1984) 337–344. [Google Scholar]
- I. Babuška, The finite element method with Lagrange multipliers. Numer. Math. 20 (1973) 179–192. [CrossRef] [Google Scholar]
- W. Bai, The quadrilateral ‘Mini’ finite element for the Stokes problem. Comput. Methods Appl. Mech. Eng. 143 (1997) 41–47. [CrossRef] [Google Scholar]
- F. Brezzi, On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers. RAIRO Anal. Numer. R2 8 (1974) 129–151. [Google Scholar]
- J. Douglas Jr., J.E. Santos, D. Sheen and X. Ye, Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems. RAIRO: M2AN 33 (1999) 747–770. [CrossRef] [EDP Sciences] [Google Scholar]
- H. Eichel, L. Tobiska and H. Xie, Supercloseness and superconvergence of stabilized low order finite element discretization of the Stokes Problem. Math. Comput. 80 (2011) 697–722. [CrossRef] [Google Scholar]
- L.P. Franca, S.P. Oliveira and M. Sarkis, Continuous Q1-Q1 Stokes elements stabilized with non-conforming null edge average velocity functions. Math. Models Meth. Appl. Sci. 17 (2007) 439–459. [CrossRef] [Google Scholar]
- V. Girault and P.A. Raviart, Finite element methods for the Navier-Stokes equations: Theory and Algorithms. Springer-Verlag, New York (1986). [Google Scholar]
- C. Park and D. Sheen, P1-nonconforming quadrilateral finite element methods for second-order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 624–640. [CrossRef] [MathSciNet] [Google Scholar]
- R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differ. Eq. 8 (1992) 97–111. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.