Free Access
Issue
ESAIM: M2AN
Volume 48, Number 4, July-August 2014
Page(s) 969 - 1009
DOI https://doi.org/10.1051/m2an/2013130
Published online 30 June 2014
  1. R.A. Adams and J.J.F. Fournier, Sobolev Spaces, vol. 140 of Pure Appl. Math. Series, 2nd edn. Elsevier (2003). [Google Scholar]
  2. V.I. Arnold, Lectures on Partial Differential Equations. Springer (2006). [Google Scholar]
  3. J.-P. Aubin, Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by gelerkin’s and finite difference methods. Ann. Scuola Norm. Sup. Pisa 21 (1967) 599–637. [MathSciNet] [Google Scholar]
  4. T.A. Baer, R.A. Cairncross, P.R. Schunk, R.R. Rao and P.A. Sackinger, A finite element method for free surface flows of incompressible fluids in three dimensions. Part II. Dynamic wetting lines. Int. J. Numer. Methods Fluids 33 (2000) 405–427. [CrossRef] [Google Scholar]
  5. E. Bänsch, Finite element discretization of the navier-stokes equations with a free capillary surface. Numer. Math. 88 (2001) 203–235. [Google Scholar]
  6. E. Bänsch and K. Deckelnick, Optimal error estimates for the stokes and navier-stokes equations with slip-boundary condition. ESAIM: M2AN 33 (1999) 923–938. [CrossRef] [EDP Sciences] [Google Scholar]
  7. E. Bänsch and B. Höhn, Numerical treatment of the navier-stokes equations with slip boundary condition. SIAM J. Sci. Comput. 21 (2000) 2144–2162. [CrossRef] [Google Scholar]
  8. F.B. Belgacem, The Mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173–197. [CrossRef] [MathSciNet] [Google Scholar]
  9. T.D. Blake, The physics of moving wetting lines. J. Colloid Interface Sci. 299 (2006) 1–13. [Google Scholar]
  10. T.D. Blake and Y.D. Shikhmurzaev, Dynamic wetting by liquids of different viscosity. J. Colloid Interface Sci. 253 (2002) 196–202. [CrossRef] [PubMed] [Google Scholar]
  11. D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 2nd edn. Cambridge University Press (2001). [Google Scholar]
  12. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, 2nd edn. Springer, New York (2002). [Google Scholar]
  13. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). [Google Scholar]
  14. F. Brezzi, W.W. Hager and P.A. Raviart, Error estimates for the finite element solution of variational inequalities: Part II. Mixed methods. Num. Math. 31 (1978) 1–16. [Google Scholar]
  15. C.E. Brown, T.D. Jones and E.L. Neustadter, Interfacial flow during immiscible displacement. J. Colloid Interface Sci. 76 (1980) 582–586. [CrossRef] [Google Scholar]
  16. R. Burridge and J.B. Keller, Peeling, slipping and cracking–some one-dimensional free-boundary problems in mechanics. SIAM Review 20 (1978) 31–61. [CrossRef] [MathSciNet] [Google Scholar]
  17. C.H.A. Cheng, D. Coutand and S. Shkoller, Navier-stokes equations interacting with a nonlinear elastic biofluid shell. SIAM J. Math. Anal. 39 (2007) 742–800. [CrossRef] [MathSciNet] [Google Scholar]
  18. S.K. Cho, H. Moon and C.-J. Kim, Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J. Microelectromech. Systems 12 (2003) 70–80. [Google Scholar]
  19. P. Ciarlet, On korns inequality. Chin. Ann. Math. Ser. B 31 (2010) 607–618. [Google Scholar]
  20. P. Clément, Approximation by finite element functions using local regularization. R.A.I.R.O. Analyse Numérique 9 (1975) 77–84. [Google Scholar]
  21. P.-P. Cortet, M. Ciccotti and L. Vanel, Imaging the stickslip peeling of an adhesive tape under a constant load. J. Stat. Mech. 2007 (2007) P03005. [Google Scholar]
  22. J. Cui, X. Chen, F. Wang, X. Gong and Z. Yu, Study of liquid droplets impact on dry inclined surface. Asia-Pacific J. Chem. Eng. 4 (2009) 643–648. [CrossRef] [Google Scholar]
  23. M.C. Delfour and J.-P. Zolésio, Shapes and Geometries: Analysis, Differential Calculus, and Optimization. Vol. 4 of Adv. Des. Control. SIAM (2001). [Google Scholar]
  24. T. Deng, K. Varanasi, M. Hsu, N. Bhate, C. Keimel, J. Stein and M. Blohm, Non-wetting of impinging droplets on textured surface. Appl. Phys. Lett. 94 (2009) 133109. [CrossRef] [Google Scholar]
  25. S. Dodds, M.S. Carvalho and S. Kumar, The dynamics of three-dimensional liquid bridges with pinned and moving contact lines. J. Fluid Mech. 707 (2012) 521–540. [CrossRef] [Google Scholar]
  26. G. Duvaut and J.L. Lions, Inequalities in Mechanics and Physics. Springer, New York (1976). [Google Scholar]
  27. C. Eck, M. Fontelos, G. Grün, F. Klingbeil and O. Vantzos, On a phase-field model for electrowetting. Interf. Free Bound. 11 (2009) 259–290. [CrossRef] [Google Scholar]
  28. J. Eggers and R. Evans, Comment on dynamic wetting by liquids of different viscosity, by t.d. blake and y.d. shikhmurzaev. J. Colloid Interf. Sci. 280 (2004) 537–538. [CrossRef] [Google Scholar]
  29. R. Eley and L. Schwartz, Interaction of rheology, geometry, and process in coating flow. J. Coat. Technol. 74 (2002) 43–53. DOI: 10.1007/BF02697974. [CrossRef] [Google Scholar]
  30. M.S. Engelman, R.L. Sani and P.M. Gresho, The implementation of normal and/or tangential boundary conditions in finite element codes for incompressible fluid flow. Int. J. Numer. Methods Fluids 2 (1982) 225–238. [CrossRef] [Google Scholar]
  31. L.C. Evans, Partial Differential Equations. American Mathematical Society, Providence, Rhode Island (1998). [Google Scholar]
  32. R.S. Falk and S.W. Walker, A mixed finite element method for ewod that directly computes the position of the moving interface. SIAM J. Numer. Anal. 51 (2013) 1016–1040. [CrossRef] [Google Scholar]
  33. E. Fermi, Thermodynamics. Dover (1956). [Google Scholar]
  34. M. Fontelos, G. Grün and S. Jörres, On a phase-field model for electrowetting and other electrokinetic phenomena. SIAM J. Math. Anal. 43 (2011) 527–563. [CrossRef] [MathSciNet] [Google Scholar]
  35. G.P. Galdi,An introduction to the mathematical theory of the Navier-Stokes equations. I. Linearized steady problems. Vol. 38 of Springer Tracts in Natural Philosophy. Springer-Verlag, New York (1994). [Google Scholar]
  36. J.-F. Gerbeau and T. Lelièvre, Generalized navier boundary condition and geometric conservation law for surface tension. Comput. Methods Appl. Mech. Eng. 198 (2009) 644–656. [Google Scholar]
  37. C.M. Groh and M.A. Kelmanson, Multiple-timescale asymptotic analysis of transient coating flows. Phys. Fluids 21 (2009) 091702. [CrossRef] [Google Scholar]
  38. B. Guo and C. Schwab, Analytic regularity of stokes flow on polygonal domains in countably weighted sobolev spaces. J. Comput. Appl. Math. 190 (2006) 487–519. [CrossRef] [MathSciNet] [Google Scholar]
  39. K.K. Haller, Y. Ventikos, D. Poulikakos and P. Monkewitz, Computational study of high-speed liquid droplet impact. J. Appl. Phys. 92 (2002) 2821–2828. [CrossRef] [Google Scholar]
  40. J. Haslinger and R.A.E. Mäkinen, Introduction to Shape Optimization: Theory, Approximation, and Computation. Vol. 7 of Adv. Des. Control. SIAM (2003). [Google Scholar]
  41. C. Huh and L.E. Scriven, Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interf. Sci. 35 (1971) 85–101. [Google Scholar]
  42. Y. Hyon, D.Y. Kwak and C. Liu, Energetic variational approach in complex fluids: Maximum dissipation principle. Discrete Contin. Dyn. Syst. Ser. A 26 (2010) 1291–1304. [CrossRef] [Google Scholar]
  43. M. Lenoir, Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Numer. Anal. 23 (1986) 562–580. [CrossRef] [MathSciNet] [Google Scholar]
  44. J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems, Vol. 1. Springer (1972). [Google Scholar]
  45. F. Mugele and J.-C. Baret, Electrowetting: from basics to applications. J. Phys.: Condensed Matter 17 (2005) R705–R774. [Google Scholar]
  46. J. Nam and M.S. Carvalho, Mid-gap invasion in two-layer slot coating. J. Fluid Mech. 631 (2009) 397–417. [CrossRef] [Google Scholar]
  47. J. Nitsche, Ein kriterium für die quasi-optimalität des ritzschen verfahrens. Numer. Math. 11 (1968) 346–348. [CrossRef] [MathSciNet] [Google Scholar]
  48. R.H. Nochetto, A.J. Salgado and S.W. Walker, A diffuse interface model for electrowettng with moving contact lines. Submitted (2012). [Google Scholar]
  49. R.H. Nochetto and S.W. Walker, A hybrid variational front tracking-level set mesh generator for problems exhibiting large deformations and topological changes. J. Comput. Phys. 229 (2010) 6243–6269. [CrossRef] [Google Scholar]
  50. L. Onsager, Reciprocal relations in irreversible processes. I. Phys. Rev. 37 (1931) 405–426. [Google Scholar]
  51. L. Onsager, Reciprocal relations in irreversible processes. II. Phys. Rev. 38 (1931) 2265–2279. [CrossRef] [Google Scholar]
  52. M. Orlt and A.-M. Sändig, Boundary Value Problems And Integral Equations In Nonsmooth Domains, chapter Regularity Of Viscous Navier-Stokes Flows In Nonsmooth Domains. Marcel Dekker, New York (1995) 185–201. [Google Scholar]
  53. R.F. Probstein, Physicochemical Hydrodynamics: An Introduction, 2nd edn. John Wiley and Sons, Inc., New York (1994). [Google Scholar]
  54. T. Qian, X.-P. Wang and P. Sheng, Generalized navier boundary condition for the moving contact line. Commun. Math. Sci. 1 (2003) 333–341. [CrossRef] [Google Scholar]
  55. T. Qian, X.-P. Wang and P. Sheng, A variational approach to moving contact line hydrodynamics. J. Fluid Mech. 564 (2006) 333–360. [CrossRef] [MathSciNet] [Google Scholar]
  56. W. Ren and W.E., Boundary conditions for the moving contact line problem. Phys. Fluids 19 (2007) 022101. [CrossRef] [Google Scholar]
  57. W. Ren, D. Hu and W.E., Continuum models for the contact line problem. Phys. Fluids 22 (2010) 102103. [CrossRef] [Google Scholar]
  58. R.V. Roy, A.J. Roberts and M.E. Simpson, A lubrication model of coating flows over a curved substrate in space. J. Fluid Mech. 454 (2002) 235–261. [CrossRef] [Google Scholar]
  59. L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. [Google Scholar]
  60. Y.D. Shikhmurzaev, Capillary Flows with Forming Interfaces. Chapman & Hall/CRC, Boca Raton, FL, 1st edition (2007). [Google Scholar]
  61. Y.D. Shikhmurzaev and T.D. Blake, Response to the comment on [J. Colloid Interface Sci. 253 (2002) 196] by j. eggers and r. evans. J. Colloid Interf. Sci. 280 (2004) 539–541. [Google Scholar]
  62. D.N. Sibley, N. Savva and S. Kalliadasis, Slip or not slip? A methodical examination of the interface formation model using two-dimensional droplet spreading on a horizontal planar substrate as a prototype system. Phys. Fluids 24 (2012). [Google Scholar]
  63. L. Slimane, A. Bendali and P. Laborde, Mixed formulations for a class of variational inequalities. ESAIM: M2AN 38 (2004) 177–201. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  64. J. Sokolowski and J.-P. Zolésio, Introduction to Shape Optimization. Springer Ser. Comput. Math. Springer-Verlag (1992). [Google Scholar]
  65. E. Stein, R. de Borst and T.J. Hughes, Encyclopedia of Computational Mechanics. 1 - Fundamentals. Wiley, 1st edition (2004). [Google Scholar]
  66. R. Temam, Navier-Stokes Equations. Theory and numerical analysis, Reprint of the 1984 edition. AMS Chelsea Publishing, Providence, RI (2001). [Google Scholar]
  67. E. Vandre, M.S. Carvalho and S. Kumar, Delaying the onset of dynamic wetting failure through meniscus confinement. J. Fluid Mech. 707 (2012) 496–520. [CrossRef] [Google Scholar]
  68. W. Velte and P. Villaggio, On the detachment of an elastic body bonded to a rigid support. J. Elasticity 27 (1992) 133–142. DOI: 10.1007/BF00041646. [CrossRef] [MathSciNet] [Google Scholar]
  69. R. Verfürth, Finite element approximation of incompressible navier-stokes equations with slip boundary condition. Numer. Math. 50 (1987) 697–721. [CrossRef] [MathSciNet] [Google Scholar]
  70. S.W. Walker, A. Bonito and R.H. Nochetto, Mixed finite element method for electrowetting on dielectric with contact line pinning. Interf. Free Bound. 12 (2010) 85–119. [Google Scholar]
  71. S.W. Walker and B. Shapiro, Modeling the fluid dynamics of electrowetting on dielectric (ewod). J. Microelectromech. Systems 15 (2006) 986–1000. [CrossRef] [Google Scholar]
  72. S.W. Walker, B. Shapiro and R.H. Nochetto, Electrowetting with contact line pinning: Computational modeling and comparisons with experiments. Phys. Fluids 21 (2009) 102103. [CrossRef] [Google Scholar]
  73. S.J. Weinstein and K.J. Ruschak, Coating flows. Ann. Rev. Fluid Mech. 36 (2004) 29–53. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you