Free Access
Issue
ESAIM: M2AN
Volume 48, Number 4, July-August 2014
Page(s) 1171 - 1197
DOI https://doi.org/10.1051/m2an/2013135
Published online 15 July 2014
  1. T. Alazard, Low Mach number limit of the full Navier–Stokes equations. Arch. Rational Mech. Anal. 180 (2006) 1–73. [CrossRef] [Google Scholar]
  2. D. Arsenio, From Boltzmann’s equation to the incompressible Navier−Stokes–Fourier system with long-range interactions. Arch. Ration. Mech. Anal. 206 (2012) 367–488. [CrossRef] [Google Scholar]
  3. C. Bardos, F. Golse and D. Levermore, Fluid dynamic limits of kinetic equations. I. Formal derivations. J. Statis. Phys. 63 (1991) 323–344. [CrossRef] [Google Scholar]
  4. C. Bardos, F. Golse and D. Levermore, Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation. Commun. Pure Appl. Math. 46 (1993) 667–753. [CrossRef] [Google Scholar]
  5. S. Bastea, R. Esposito, J.L. Lebowitz and R. Marra, Binary fluids with long range segregating interaction. I. Derivation of kinetic and hydrodynamic equations. J. Statis. Phys. 101 (2000) 1087–1136. [CrossRef] [Google Scholar]
  6. B.J. Bayly, D. Levermore and T. Passot, Density variations in weakly compressible flows. Phys. Fluids A 4 (1992) 945–954. [CrossRef] [MathSciNet] [Google Scholar]
  7. A. Berti, V. Berti and D. Grandi, Well–posedness of an isothermal diffusive model for binary mixtures of incompressible fluids. Nonlinearity 24 (2011) 3143–3164. [CrossRef] [Google Scholar]
  8. M. Bisi, M. Groppi and G. Spiga, Fluid-dynamic equations for reacting gas mixtures. Appl. Math. 50 (2005) 43–62. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Bisi, M. Groppi and G. Spiga, Kinetic Modelling of Bimolecular Chemical Reactions, Kinetic Methods for Nonconservative and Reacting Systems. Quaderni di Matematica [Math. Ser.], vol. 16. Edited by G. Toscani. Aracne Editrice, Roma (2005) 1–143. [Google Scholar]
  10. M. Bisi and L. Desvillettes, From reactive Boltzmann equations to reaction-diffusion systems. J. Statis. Phys. 124 (2006) 881–912. [CrossRef] [MathSciNet] [Google Scholar]
  11. M. Bisi, G. Martalò and G. Spiga, Multi-temperature Euler hydrodynamics for a reacting gas from a kinetic approach to rarefied mixtures with resonant collisions. Europhys. Lett. 95 (2011), 55002. [CrossRef] [Google Scholar]
  12. L. Boudin, B. Grec, M. Pavic and F. Salvarani, Diffusion asymptotics of a kinetic model for gaseous mixtures. Kinet. Relat. Models 6 (2013) 137–157. [CrossRef] [MathSciNet] [Google Scholar]
  13. S. Brull, Habilitation thesis. Univ. Bordeaux (2012). [Google Scholar]
  14. S. Brull, V. Pavan and J. Schneider, Derivation of BGK models for mixtures. Eur. J. Mech. B-Fluids 33 (2012) 74–86. [Google Scholar]
  15. C. Cercignani, The Boltzmann Equation and its Applications. Springer, New York (1988). [Google Scholar]
  16. V. Giovangigli, Multicomponent flow modeling, Series on Modeling and Simulation in Science, Engineering and Technology. Birkhaüser, Boston (1999). [Google Scholar]
  17. F. Golse and L. Saint-Raymond, The Navier−Stokes limit of the Boltzmann equation for bounded collision kernels. Invent. Math. 155 (2004) 81–161. [CrossRef] [MathSciNet] [Google Scholar]
  18. F. Golse and L. Saint-Raymond, The incompressible Navier−Stokes limit of the Boltzmann equation for hard cutoff potentials. J. Math. Pures Appl. 91 (2009) 508–552. [CrossRef] [Google Scholar]
  19. H. Grad, Asymptotic theory of the Boltzmann equation. Phys. Fluids 6 (1963) 147–181. [CrossRef] [MathSciNet] [Google Scholar]
  20. H. Grad, Asymptotic theory of the Boltzmann equation II, Rarefied Gas Dynamics. Proc. of 3rd Int. Sympos. Academic Press, New York I (1963) 26–59. [Google Scholar]
  21. T. Kato, Perturbation Theory for Linear Operators. Springer-Verlag, New York (1966). [Google Scholar]
  22. D. Levermore and N. Masmoudi, From the Boltzmann equation to an incompressible Navier-Stokes-Fourier system. Arch. Rational Mech. Anal. 196 (2010) 753–809. [CrossRef] [Google Scholar]
  23. P.L. Lions, N. Masmoudi, Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77 (1998) 585–627. [CrossRef] [MathSciNet] [Google Scholar]
  24. P.L. Lions and N. Masmoudi, From the Boltzmann equations to the equations of incompressible fluid mechanics II. Arch. Rational Mech. Anal. 158 (2001) 195–211. [CrossRef] [Google Scholar]
  25. J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn–Hilliard fluids and topological transitions. Proc. R. Soc. A. Math. Phys. Eng. Sci. 454 (1998) 2617–2654. [Google Scholar]
  26. L. Saint-Raymond, Some recent results about the sixth problem of Hilbert. Analysis and simulation of fluid dynamics. Adv. Math. Fluid Mech. Birkhäuser, Basel (2007) 183–199. [Google Scholar]
  27. L. Saint-Raymond, Hydrodynamic limits of the Boltzmann equation. Vol. 1971 of Lect. Notes Math. Springer-Verlag, Berlin (2009). [Google Scholar]
  28. L. Saint-Raymond, Some recent results about the sixth problem of Hilbert: hydrodynamic limits of the Boltzmann equation, European Congress of Mathematics. Eur. Math. Soc. Zürich (2010) 419–439. [Google Scholar]
  29. E.A. Spiegel and G. Veronis, On the Boussinesq approximation for a compressible fluid. Astrophys. J. 131 442–447. [Google Scholar]
  30. A. Vorobev, Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations. Phys. Rev. E 85 (2010) 056312. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you