Free Access
Issue
ESAIM: M2AN
Volume 48, Number 4, July-August 2014
Page(s) 1199 - 1226
DOI https://doi.org/10.1051/m2an/2014013
Published online 15 July 2014
  1. M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera, An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris 339 (2004) 667–672. [Google Scholar]
  2. G. Biswas, M. Breuer and F. Durst, Backward-facing step flows for various expansion ratios at low and moderate Reynolds numbers. J. Fluids Eng. 126 (2004) 362–374. [CrossRef] [Google Scholar]
  3. F. Brezzi, On the existence, uniqueness, and approximation of saddle point problems arising from Lagrangian multipliers. RAIRO. Anal. Numér. 2 (1974) 129–151. [Google Scholar]
  4. F. Brezzi, J. Rappaz and P.A. Raviart, Finite dimensional approximation of nonlinear problems. Part I: Branches of nonsingular solutions. Numer. Math. 36 (1980) 1–25. [CrossRef] [MathSciNet] [Google Scholar]
  5. G. Caloz and J. Rappaz, Numerical analysis for nonlinear and bifurcation problems. In vol. 5, Techniques of Scientific Computing (Part 2). Handbook of Numerical Analysis, edited by P.G. Ciarlet and J.L. Lions. Elsevier Science B.V. (1997) 487–637. [Google Scholar]
  6. C. Canuto, T. Tonn and K. Urban, A posteriori error analysis of the reduced basis method for non-affine parameterized nonlinear pdes. SIAM J. Numer. Anal. 47 (2009) 2001–2022. [Google Scholar]
  7. S. Deparis, Reduced basis error bound computation of parameter-dependent Navier–Stokes equations by the natural norm approach. SIAM J. Numer. Anal. 46 (2008) 2039–2067. [CrossRef] [MathSciNet] [Google Scholar]
  8. S. Deparis and G. Rozza, Reduced basis method for multi-parameter-dependent steady Navier-Stokes equations: Applications to natural convection in a cavity. J. Comput. Phys. 228 (2009) 4359–437. [CrossRef] [MathSciNet] [Google Scholar]
  9. H.C. Elman, D.J. Silvester and A.J. Wathen, Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics. Series in Numer. Math. Sci. Comput. Oxford Science Publications, Clarendon Press, Oxford (2005). [Google Scholar]
  10. A.-L. Gerner and K. Veroy, Reduced basis a posteriori error bounds for the Stokes equations in parametrized domains: a penalty approach. Math. Models Methods Appl. Sci. 21 (2010) 2103–2134. [CrossRef] [Google Scholar]
  11. P.M. Gresho and R.L. Sani, Incompressible Flow and the Finite Element Method: Advection-Diffusion and Isothermal Laminar Flow.John Wiley & Sons (1998). [Google Scholar]
  12. H. Herrero, Y. Maday and F. Pla, RB (reduced basis) for RB (Rayleigh-Bénard). Comput. Methods Appl. Mech. Engrg. 261–262 (2013) 132–141. [CrossRef] [Google Scholar]
  13. D.B.P. Huynh, D.J. Knezevic, Y. Chen, J.S. Hesthaven and A.T. Patera, A natural-norm successive constraint method for inf-sup lower bounds. Comput. Methods Appl. Mech. Engrg. 199 (2010) 1963–1975. [Google Scholar]
  14. K. Ito and S.S. Ravindran, A reduced order method for simulation and control of fluid flows. J. Comput. Phys. 143 (1998) 403–425. [CrossRef] [MathSciNet] [Google Scholar]
  15. T. Lassila, A. Manzoni, A. Quarteroni and G. Rozza, Boundary control and shape optimization for the robust design of bypass anastomoses under uncertainty. ESAIM: M2AN 47 (2013) 1107–1131. [CrossRef] [EDP Sciences] [Google Scholar]
  16. T. Lassila, A. Manzoni, A. Quarteroni and G. Rozza, Model order reduction in fluid dynamics: challenges and perspectives. In vol. 9, Reduced Order Methods for Modeling and Computational Reduction. Edited by A. Quarteroni and G. Rozza. Springer MS&A Series (2014) 235–274. [Google Scholar]
  17. A. Manzoni, Reduced models for optimal control, shape optimization and inverse problems in haemodynamics. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (2012). [Google Scholar]
  18. A. Manzoni and F. Negri, Rigorous and heuristic strategies for the approximation of stability factors in nonlinear parametrized PDEs. Technical report MATHICSE 8.2014: http://mathicse.epfl.ch/, submitted (2014). [Google Scholar]
  19. A. Manzoni, A. Quarteroni and G. Rozza, Model reduction techniques for fast blood flow simulation in parametrized geometries. Int. J. Numer. Methods Biomed. Engrg. 28 (2012) 604–625. [CrossRef] [MathSciNet] [Google Scholar]
  20. A. Manzoni, A. Quarteroni and G. Rozza, Shape optimization of cardiovascular geometries by reduced basis methods and free-form deformation techniques. Int. J. Numer. Methods Fluids 70 (2012) 646–670. [CrossRef] [MathSciNet] [Google Scholar]
  21. N.C. Nguyen, K. Veroy and A.T. Patera, Certified real-time solution of parametrized partial differential equations. Handbook of Materials Modeling. Edited by S. Yip. Springer, The Netherlands (2005) 1523–1558. [Google Scholar]
  22. J.S. Peterson, The reduced basis method for incompressible viscous flow calculations. SIAM J. Sci. Statis. Comput. 10 (1989) 777–786. [Google Scholar]
  23. A. Quarteroni and G. Rozza, Numerical solution of parametrized Navier-Stokes equations by reduced basis methods. Numer. Methods Partial Differ. Equ. 23 (2007) 923–948. [CrossRef] [Google Scholar]
  24. A. Quarteroni, G. Rozza and A. Manzoni, Certified reduced basis approximation for parametrized partial differential equations in industrial applications. J. Math. Ind. 1 (2011). [Google Scholar]
  25. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations 1st edition. Springer-Verlag, Berlin-Heidelberg (1994). [Google Scholar]
  26. G. Rozza, D.B.P. Huynh and A. Manzoni, Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants. Numer. Math. 125 (2013) 115–152. [CrossRef] [MathSciNet] [Google Scholar]
  27. G. Rozza, D.B.P. Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Engrg. 15 (2008) 229–275. [Google Scholar]
  28. G. Rozza and K. Veroy, On the stability of reduced basis methods for Stokes equations in parametrized domains. Comput. Methods Appl. Mech. Engrg. 196 (2007) 1244–1260. [Google Scholar]
  29. S. Sen, K. Veroy, D.B.P. Huynh, S. Deparis, N.C. Nguyen and A.T. Patera, “Natural norm” a posteriori error estimators for reduced basis approximations. J. Comput. Phys. 217 (2006) 37–62. [CrossRef] [MathSciNet] [Google Scholar]
  30. R. Temam, Navier-Stokes Equations. AMS Chelsea, Providence, Rhode Island (2001). [Google Scholar]
  31. K. Veroy and A.T. Patera, Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Methods Fluids 47 (2005) 773–788. [CrossRef] [MathSciNet] [Google Scholar]
  32. M. Yano and A.T. Patera, A space-time variational approach to hydrodynamic stability theory. Proc. R. Soc. A 469 (2013) 0036. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you