Free Access
Issue
ESAIM: M2AN
Volume 48, Number 4, July-August 2014
Page(s) 1029 - 1060
DOI https://doi.org/10.1051/m2an/2014009
Published online 30 June 2014
  1. M. Bergdorf, G.-H. Cottet and P. Koumoutsakos, Multilevel adaptive particle methods for convection-diffusion equations. SIAM Multiscale Model. Simul. 4 (2005) 328–357. [CrossRef] [Google Scholar]
  2. M. Bergdorf and P. Koumoutsakos, A lagrangian particle-wavelet method. SIAM Multiscale Model. Simul. 5 (2006) 980–995. [CrossRef] [Google Scholar]
  3. F. Büyükkeçeci, O. Awile and I. Sbalzarini, A portable opencl implementation of generic particle-mesh and mesh-particle interpolation in 2d and 3d. Parallel Comput. 39 (2013) 94–111. [CrossRef] [Google Scholar]
  4. A. Chorin, Numerical study of slightly viscous flow. J. Fluid Mech. 57 (1973) 785–796. [Google Scholar]
  5. C. Cocle, G. Winckelmans and G. Daeninck, Combining the vortex-in-cell and parallel fast multipole methods for efficient domain decomposition simulations. J. Comput. Phys. 227 (2008) 9091–9120. [CrossRef] [Google Scholar]
  6. C. Cotter, J. Frank and S. Reich, The remapped particle-mesh semi-lagrangian advection scheme. Q. J. Meteorol. Soc. 133 (2007) 251–260. [CrossRef] [Google Scholar]
  7. G.-H. Cottet and P. Koumoutsakos, Vortex methods. Cambridge University Press (2000). [Google Scholar]
  8. G.-H. Cottet and L. Weynans, Particle methods revisited: a class of high order finite-difference methods. C.R. Math. 343 (2006) 51–56. [CrossRef] [MathSciNet] [Google Scholar]
  9. N. Crouseilles, T. Respaud and E. Sonnendrücker, A forward semi-lagrangian method for the numerical solution of the vlasov equation. Comput. Phys. Commun. 180 (2009) 1730–1745. [CrossRef] [Google Scholar]
  10. R. Hockney and J. Eastwood, Simulation Using Particles. Inst. Phys. Publ. (1988). [Google Scholar]
  11. A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov and A. Fasih, PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation. Parallel Comput. 38 (2012) 157–174. [Google Scholar]
  12. P. Koumoutsakos, Inviscid axisymmetrization of an elliptical vortex. J. Comput. Phys. 138 (1997) 821–857. [CrossRef] [Google Scholar]
  13. P. Koumoutsakos and A. Leonard, High resolution simulation of the flow around an impulsively started cylinder using vortex methods. J. Fluid Mech. 296 (1995) 1–38. [CrossRef] [Google Scholar]
  14. S. Labbé, J. Laminie and V. Louvet, Méthodologie et environnement de développement orientés objets: de l’analyse mathématique à la programmation. MATAPLI 70 (2003) 79–92. [Google Scholar]
  15. J.-B. Lagaert, G Balarac, and G.-H. Cottet, Hybrid spectral particle method for turbulent transport of passive scalar. J. Comput. Phys. 260 (2014) 127–142. [CrossRef] [Google Scholar]
  16. A. Leonard. Computing three-dimensional incompressible flows with vortex elements. Annu. Rev. Fluid Mech. 17 (1985) 523–559. [CrossRef] [Google Scholar]
  17. R.J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal. 33 (1996) 627–665. [CrossRef] [MathSciNet] [Google Scholar]
  18. A. Magni and G.-H. Cottet, Accurate, non-oscillatory, remeshing schemes for particle methods. J. Comput. Phys. 231 (2012) 152–172. [CrossRef] [Google Scholar]
  19. J. Monaghan, Extrapolating B splines for interpolation. J. Comput. Phys. 60 (1985) 253–262. [CrossRef] [Google Scholar]
  20. J. Monaghan, An introduction to sph. Comput. Phys. Commun. 48 (1988) 89–96. [Google Scholar]
  21. A. Munshi, The OpenCL Specification. Khronos OpenCL Working Group (2011). [Google Scholar]
  22. M. Ould-Salihi, G.-H. Cottet and M. El Hamraoui, Blending finite-difference and vortex methods for incompressible flow computations. SIAM J. Sci. Comput. 22 (2000) 1655–1674. [CrossRef] [Google Scholar]
  23. T. Respaud and E. Sonnendruücker, Analysis of a new class of forward semi-lagrangian schemes for the 1d Vlasov-Poisson equations. Numer. Math. 118 (2011) 329–366. [CrossRef] [MathSciNet] [Google Scholar]
  24. D. Rossinelli, M. Bergdorf, G.H. Cottet and P. Koumoutsakos, GPU accelerated simulations of bluff body flows using vortex methods. J. Comput. Phys. 229 (2010) 3316–3333. [CrossRef] [Google Scholar]
  25. D. Rossinelli, C. Conti and P. Koumoutsakos, Mesh-particle interpolations on graphics processing units and multicorecentral processing units. Philosophical Transactions of the Royal Society A: Mathematical, Phys. Engrg. Sci. 369 (2011) 2164–2175. [CrossRef] [Google Scholar]
  26. D. Rossinelli and P. Koumoutsakos, Vortex methods for incompressible flow simulations on the GPU. Visual Comput. 24 (2008) 699–708. [CrossRef] [Google Scholar]
  27. G. Ruetsch and P. Micikevicius, Optimizing matrix transpose in cuda. NVIDIA CUDA SDK Application Note (2009). [Google Scholar]
  28. I. Sbalzarini, J. Walther, M. Bergdorf, S. Hieber, E. Kotsalis and P. Koumoutsakos, PPM–a highly efficient parallel particle–mesh library for the simulation of continuum systems. J. Comput. Phys. 215 (2006) 566–588. [CrossRef] [Google Scholar]
  29. I. Schoenberg, Contribution to the problem of approximation of equidistant data by analytic functions. Q. Appl. Math. 4 (1946) 45–99. [Google Scholar]
  30. D. Valdez-Balderas, J. Dominguez, B. Rogers and A. Crespo, Towards accelerating smoothed particle hydrodynamics simulations for free-surface flows on multi-gpu clusters. J. Parallel Distrib. Comput. 73 (2012) 1483–1493. [CrossRef] [Google Scholar]
  31. F. De Vuyst and F. Salvarani, GPU-accelerated numerical simulations of the knudsen gas on time- dependent domains. Comput. Phys. Commun. 184 (2013) 532–536. [CrossRef] [Google Scholar]
  32. R. Yokota, L. Barba, T. Narumi and K. Yasuoka, Petascale turbulence simulation using a highly parallel fast multipole method. Comput. Phys. Commun. 184 (2013) 445–455. [CrossRef] [Google Scholar]
  33. Y. Zhang, J. Cohen and J.D. Owens, Fast tridiagonal solvers on the GPU. SIGPLAN Not. 45 (2010) 127–136. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you