Free Access
Volume 48, Number 4, July-August 2014
Page(s) 1061 - 1087
Published online 30 June 2014
  1. F. Bai, C.M. Elliott, A. Gardiner, A. Spence and A.M. Stuart, The viscous Cahn-Hilliard equation. I. Computations. Nonlinearity 8 (1995) 131–160. [CrossRef] [Google Scholar]
  2. J.W. Barrett and J.F. Blowey, An error bound for the finite element approximation of the Cahn-Hilliard equation with logarithmic free energy. Numer. Math. 72 (1995) 1–20. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.W. Barrett and J.F. Blowey, An improved error bound for a finite element approximation of a model for phase separation of a multi-component alloy with a concentration dependent mobility matrix. Numer. Math. 88 (2001) 255–297. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.W. Barrett, J.F. Blowey and H. Garcke, Finite element approximation of the Cahn-Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37 (1999) 286–318. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.W. Barrett, J.F. Blowey and H. Garcke, On fully practical finite element approximations of degenerate Cahn-Hilliard systems. ESAIM: M2AN 35 (2001) 713–748. [CrossRef] [EDP Sciences] [Google Scholar]
  6. S. Bartels and R. Müller, A posteriori error controlled local resolution of evolving interfaces for generalized Cahn-Hilliard equations. Interfaces Free Bound. 12 (2010) 45–73. [CrossRef] [MathSciNet] [Google Scholar]
  7. S. Bartels and R. Müller, Error control for the approximation of Allen-Cahn and Cahn-Hilliard equations with a logarithmic potential. Numer. Math. 119 (2011) 409–435. [CrossRef] [MathSciNet] [Google Scholar]
  8. J.F. Blowey and C.M. Elliott, The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. II. Numerical analysis. Eur. J. Appl. Math. 3 (1992) 147–179. [Google Scholar]
  9. E. Bonetti, Global solvability of a dissipative Frémond model for shape memory alloys. II. Existence. Quart. Appl. Math. 62 (2004) 53–76. [MathSciNet] [Google Scholar]
  10. H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies, no. 5. Notas de Matemática. North-Holland Publishing Co., Amsterdam (1973). [Google Scholar]
  11. C. Carstensen and P. Plecháč, Numerical analysis of a relaxed variational model of hysteresis in two-phase solids. ESAIM: M2AN 35 (2001) 865–878. [CrossRef] [EDP Sciences] [Google Scholar]
  12. Z. Chen, R.H. Nochetto and A. Schmidt, Error control and adaptivity for a phase relaxation model. ESAIM: M2AN 34 (2000) 775–797. [CrossRef] [EDP Sciences] [Google Scholar]
  13. L. Cherfils, M. Petcu and M. Pierre, A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions. Discrete Contin. Dyn. Syst. 27 (2010) 1511–1533. [CrossRef] [MathSciNet] [Google Scholar]
  14. E. Chiodaroli, A dissipative model for hydrogen storage: existence and regularity results. Math. Methods Appl. Sci. 34 (2011) 642–669. [CrossRef] [Google Scholar]
  15. P. Colli, M. Frémond and O. Klein, Global existence of a solution to a phase field model for supercooling. Nonlinear Anal. Real World Appl. 2 (2001) 523–539. [CrossRef] [Google Scholar]
  16. P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, Well-posedness and long-time behavior for a nonstandard viscous Cahn-Hilliard system. SIAM J. Appl. Math. 71 (2011) 1849–1870. [CrossRef] [Google Scholar]
  17. P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, Global existence and uniqueness for a singular/degenerate Cahn–Hilliard system with viscosity. J. Differ. Equ. 254 (2013) 4217–4244. [CrossRef] [Google Scholar]
  18. C. Eck, B. Jadamba and P. Knabner, Error estimates for a finite element discretization of a phase field model for mixtures. SIAM J. Numer. Anal. 47 (2010) 4429–4445. [CrossRef] [Google Scholar]
  19. S. Frigeri, P. Krejčí and U. Stefanelli, Quasistatic isothermal evolution of shape memory alloys. Math. Models Methods Appl. Sci. 21 (2011) 2409–2432. [CrossRef] [Google Scholar]
  20. G. Gilardi and U. Stefanelli, Time-discretization and global solution for a doubly nonlinear Volterra equation. J. Differ. Equ. 228 (2006) 707–736. [CrossRef] [Google Scholar]
  21. C. Gräser and R. Kornhuber, Multigrid methods for obstacle problems. J. Comput. Math. 27 (2009) 1–44. [Google Scholar]
  22. C. Gräser and R. Kornhuber, Nonsmooth Newton methods for set-valued saddle point problems. SIAM J. Numer. Anal. 47 (2009) 1251–1273. [CrossRef] [MathSciNet] [Google Scholar]
  23. C. Gräser, R. Kornhuber and U. Sack, Nonsmooth Schur-Newton methods for vector-valued Cahn-Hilliard equations. Freie Universität Berlin, Fachbereich Mathematik und Informatik, Serie A Preprint no. 01 (2013) 1–16. [Google Scholar]
  24. J.W. Jerome, Approximation of nonlinear evolution systems, vol. 164 of Math. Sci. Eng. Academic Press Inc., Orlando, FL (1983). [Google Scholar]
  25. D. Kessler and J.-F. Scheid, A priori error estimates of a finite-element method for an isothermal phase-field model related to the solidification process of a binary alloy. IMA J. Numer. Anal. 22 (2002) 281–305. [CrossRef] [MathSciNet] [Google Scholar]
  26. J. Kim, Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12 (2012) 613–661. [Google Scholar]
  27. P. Krejčí and U. Stefanelli, Well-posedness of a thermo-mechanical model for shape memory alloys under tension. ESAIM: M2AN 44 (2010) 1239–1253. [CrossRef] [EDP Sciences] [Google Scholar]
  28. A. Mielke, L. Paoli and A. Petrov, On existence and approximation for a 3D model of thermally induced phase transformations in shape-memory alloys. SIAM J. Math. Anal. 41 (2009) 1388–1414. [CrossRef] [MathSciNet] [Google Scholar]
  29. P. Podio-Guidugli, Models of phase segregation and diffusion of atomic species on a lattice. Ric. Mat. 55 (2006) 105–118. [CrossRef] [MathSciNet] [Google Scholar]
  30. M. Röger, Existence of weak solutions for the Mullins-Sekerka flow. SIAM J. Math. Anal. 37 (2005) 291–301. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  31. A. Segatti, Error estimates for a variable time-step discretization of a phase transition model with hyperbolic momentum. Numer. Funct. Anal. Optim. 25 (2004) 547–569. [CrossRef] [MathSciNet] [Google Scholar]
  32. J. Simon, Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. 146 (1987) 65–96. [Google Scholar]
  33. U. Stefanelli, Error control of a nonlinear evolution problem related to phase transitions. Numer. Funct. Anal. Optim. 20 (1999) 585–608. [CrossRef] [MathSciNet] [Google Scholar]
  34. U. Stefanelli, Error control for a time-discretization of the full one-dimensional Frémond model for shape memory alloys. Adv. Math. Sci. Appl. 10 (2000) 917–936. [MathSciNet] [Google Scholar]
  35. U. Stefanelli, Analysis of a variable time-step discretization for a phase transition model with micro-movements. Commun. Pure Appl. Anal. 5 (2006) 657–671. [CrossRef] [MathSciNet] [Google Scholar]
  36. C.L.D. Vaz, Rothe’s method for an isothermal phase-field model of a binary alloy with convection. Mat. Contemp. 32 (2007) 221–251. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you