Free Access
Volume 48, Number 5, September-October 2014
Page(s) 1413 - 1429
Published online 13 August 2014
  1. D. Arnold, F. Brezzi and M. Fortin, A stable finite element for the Stokes equations. Calcolo 21 (1984) 337-344. [Google Scholar]
  2. M. Ayadi, M. K. Gdoura and T. Sassi, Mixed formulation for Stokes problem with Tresca friction. C. R. Acad. Sci. Paris, Ser. I 348 (2010) 1069–1072. [CrossRef] [Google Scholar]
  3. L. Baillet and T. Sassi, Mixed finite element methods for the Signorini problem with friction. Numer. Methods Partial Differ. Eq. 22 (2006) 1489–1508. [CrossRef] [MathSciNet] [Google Scholar]
  4. F. Ben Belgacem and Y. Renard, Hybrid finite element method for the Signorini problem. Math. Comput. 72 (2003) 1117–1145. [Google Scholar]
  5. M. Boukrouche and F. Saidi, Non-isothermal lubrication problem with Tresca fluid-solid interface law. Part I. Nonlinear Analysis: Real World Appl. 7 (2006) 1145–1166. [CrossRef] [Google Scholar]
  6. F. Brezzi, W. Hager and P.A. Raviart, Error estimates for the finite element solution of variational inequalities, part II. Mixed methods. Numer. Math. 31 (1978) 1–16. [CrossRef] [MathSciNet] [Google Scholar]
  7. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, vol. 15. Series Comput. Math. Springer, New York (1991). [Google Scholar]
  8. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Studies Math. Appl. North Holland, Netherland (1980). [Google Scholar]
  9. Ph. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77–84. [Google Scholar]
  10. P. Coorevits, P. Hild, K. Lhalouani and T. Sassi, Mixed finite element methods for unilateral problems: convergence analysis and numerical studies. Math. Comput. 71 (2001) 1–25. [CrossRef] [MathSciNet] [Google Scholar]
  11. M. Crouzeix and V. Thomée, The stability in Lp and W1,p of the L2-projection on finite element function spaces. Math. Comput. 48 (1987) 521–532. [Google Scholar]
  12. J.St. Doltsinis, J. Luginsland and S. Nölting, Some developments in the numerical simulation of metal forming processes. Eng. Comput. 4 (1987) 266–280. [CrossRef] [Google Scholar]
  13. A. Ern and J.-L. Guermond, Éléments Finis: Théorie, Application, Mise en Oeuvre. Math. Appl. SMAI, Springer 36 (2001). [Google Scholar]
  14. M. Fortin and D. Côté, On the imposition of friction boundary conditions for the numerical simulation of Bingham fluid flows. Comput. Methods Appl. Mech. Engrg. 88 (1991) 97–109. [CrossRef] [Google Scholar]
  15. H. Fujita, Flow Problems with Unilateral Boundary Conditions. Leçons, Collège de France (1993). [Google Scholar]
  16. H. Fujita, A Mathematical analysis of motions of viscous incompressible fluid under leak and slip boundary conditions. Math. Fluid Mech. Model. Formula 888 (1994) 199–216. [Google Scholar]
  17. H. Fujita, A coherent analysis of Stokes flows under boundary conditions of friction type. J. Comput. Appl. Math. 149 (2002) 57–69. [CrossRef] [Google Scholar]
  18. M.K. Gdoura, Problème de Stokes avec des conditions aux limites non-linéaires: analyse numérique et algorithmes de résolution, Thèse en co-tutelle, Université Tunis El Manar et Université de Caen Basse Normandie (2011). [Google Scholar]
  19. G. Geymonat and F. Krasucki, On the existence of the Airy function in Lipschitz domains. Application to the traces of H2 C. R. Acad. Sci. Paris, Série I 330 (2000) 355–360. [CrossRef] [Google Scholar]
  20. V. Girault and P.A. Raviart, Finite Element Approximation of the Navier-Stokes Equations. Springer-Verlag, Berlin (1979). [Google Scholar]
  21. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Monogr. Studies Math. Pitman (Advanced Publishing Program), Boston, MA 24 (1985). [Google Scholar]
  22. S.G. Hatzikiriakos and J.M. Dealy, Wall slip of molten high density polyethylene. I. Sliding plate rheometer studies. J. Rheology 3 (1991) 497–523. [Google Scholar]
  23. J. Haslinger and T. Sassi, Mixed finite element approximation of 3D contact problem with given friction: Error analysis and numerical realisation, ESAIM: M2AN 38 (2004) 563–578. [CrossRef] [EDP Sciences] [Google Scholar]
  24. N. Kikuchi and J.T. Oden, Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM Studies in Appl. Math. Philadelphia (1988). [Google Scholar]
  25. Y. Li and K. Li, Penalty finite element method for Stokes problem with nonlinear slip boundary conditions. Appl. Math. Comput. 204 (2008) 216–226. [CrossRef] [Google Scholar]
  26. J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Springer-Verlag, Berlin, New York (1972). [Google Scholar]
  27. A. Magnin and J.M. Piau, Shear rheometry of fluids with a yield stress. J. Non-Newtonian Fluid Mech. 23 (1987) 91–106. [CrossRef] [Google Scholar]
  28. L. Marini and A. Quarteroni, A relaxation procedure for domain decomposition method using finite elements. Numer. Math. 55 (1989) 575–598. [CrossRef] [MathSciNet] [Google Scholar]
  29. I.J. Rao and K.R. Rajagopal, The effect of the slip boundary condition on the flow of fluids in a channel. Acta Mechanica 135 (1999) 113–126. [Google Scholar]
  30. N. Saito and H. Fujita, Regularity of solutions to the Stokes equations under a certain nonlinear boundary condition, The Navier-Stokes Equations. Lect. Notes Pure Appl. Math. 223 (2001) 73–86. [Google Scholar]
  31. N. Saito, On the stokes equation with the leak and slip boundary conditions of friction type: regularity of solutions. Pub. RIMS. Kyoto University 40 (2004) 345–383. [Google Scholar]
  32. E. Santanach Carreras, N. El Kissi and J.-M. Piau, Block copolymer extrusion distortions: Exit delayed transversal primary cracks and longitudinal secondary cracks: Extrudate splitting and continuous peeling. J. Non-Newt. Fluid Mech. 131 (2005) 1–21. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you