Free Access
Volume 48, Number 5, September-October 2014
Page(s) 1431 - 1449
Published online 13 August 2014
  1. T. Abboud and H. Ammari, Diffraction at a curved grating: TM and TE cases, homogenization. J. Math. Anal. Appl. 202 (1996) 995–1026. [CrossRef] [MathSciNet] [Google Scholar]
  2. H. Ammari, E. Beretta, E. Francini, H. Kang and M. Lim, Reconstruction of small interface changes of an inclusion from modal measurements ii: The elastic case. J. Math. Pures Appl. 94 (2010) 322–339. [CrossRef] [Google Scholar]
  3. H. Ammari and J.C. Nédélec, Time-harmonic electromagnetic fields in thin chiral curved layers. SIAM J. Math. Anal. 29 (1998) 395–423. [CrossRef] [MathSciNet] [Google Scholar]
  4. V. Andreev and A. Samarski, Méthode aux différences pour les équations elliptiques. Edition de Moscou, Moscou (1978). [Google Scholar]
  5. X. Antoine, H. Barucq and L. Vernhet, High-frequency asymptotic analysis of a dissipative transmission problem resulting in generalized impedance boundary conditions. Asymptot. Anal. 26 (2001) 257–283. [MathSciNet] [Google Scholar]
  6. A. Bendali and K. Lemrabet, The effect of a thin coating on the scattering of a time-harmonic wave for the Helmholtz equation. SIAM J. Appl. Math. 56 (1996) 1664–1693. [CrossRef] [MathSciNet] [Google Scholar]
  7. G. Caloz, M. Costabel, M. Dauge and G. Vial, Asymptotic expansion of the solution of an interface problem in a polygonal domain with thin layer. Asymptot. Anal. 50 (2006) 121–173. [MathSciNet] [Google Scholar]
  8. G. Caloz, M. Dauge, E. Faou and V. Péron, On the influence of the geometry on skin effect in electromagnetism. Comput. Methods Appl. Mech. Engrg. 200 (2011) 1053–1068. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Costabel, M. Dauge and S. Nicaise, Corner Singularities and Analytic Regularity for Linear Elliptic Systems. Part I: Smooth domains (2010) hal-00453934. [Google Scholar]
  10. J. Diaz and V. Péron, Equivalent Conditions for Elasto-Acoustics, in Waves 2013: The 11th International Conference on Math. Numer. Aspects of Waves. Gammarth, Tunisie (2013) 345–346. [Google Scholar]
  11. M. Durán and J.-C. Nédélec, Un problème spectral issu d’un couplage élasto-acoustique. ESAIM: M2AN 34 (2000) 835–857. [CrossRef] [EDP Sciences] [Google Scholar]
  12. B. Engquist and J.C. Nédélec, Effective boundary condition for acoustic and electromagnetic scattering in thin layers. Technical Report of CMAP 278 (1993). [Google Scholar]
  13. H. Haddar, P. Joly and H.-M. Nguyen, Generalized impedance boundary conditions for scattering problems from strongly absorbing obstacles: the case of Maxwell’s equations. Math. Models Methods Appl. Sci. 18 (2008) 1787–1827. [CrossRef] [MathSciNet] [Google Scholar]
  14. T. Huttunen, J.P. Kaipio and P. Monk, An ultra-weak method for acoustic fluid-solid interaction. J. Comput. Appl. Math. 213 (2008) 166–185. [CrossRef] [Google Scholar]
  15. D.S. Jones, Low-frequency scattering by a body in lubricated contact. Quart. J. Mech. Appl. Math. 36 (1983) 111–138. [CrossRef] [MathSciNet] [Google Scholar]
  16. O.D. Lafitte, Diffraction in the high frequency regime by a thin layer of dielectric material. I. The equivalent impedance boundary condition. SIAM J. Appl. Math. 59 (1999) 1028–1052. [CrossRef] [Google Scholar]
  17. O.D. Lafitte and G. Lebeau, Équations de Maxwell et opérateur d’impédance sur le bord d’un obstacle convexe absorbant. C. R. Acad. Sci. Paris Sér. I Math. 316 (1993) 1177–1182. [Google Scholar]
  18. K. Lemrabet, Le problème de Ventcel pour le système de l’élasticité dans un domaine de R3. C. R. Acad. Sci. Paris Sér. I Math. 304 (1987) 151–154. [Google Scholar]
  19. M.A. Leontovich, Approximate boundary conditions for the electromagnetic field on the surface of a good conductor, in Investigations on radiowave propagation, vol. 2. Printing House of the USSR Academy of Sciences, Moscow (1948) 5–12. [Google Scholar]
  20. C.J. Luke and P.A. Martin, Fluid-solid interaction: acoustic scattering by a smooth elastic obstacle. SIAM J. Appl. Math. 55 (1995) 904–922. [CrossRef] [Google Scholar]
  21. P. Monk and V. Selgas, An inverse fluid-solid interaction problem. Inverse Probl. Imaging 3 (2009) 173–198. [CrossRef] [MathSciNet] [Google Scholar]
  22. D. Natroshvili, A.-M. Sändig and W.L. Wendland, Fluid-structure interaction problems, in Mathematical aspects of boundary element methods (Palaiseau, 1998), vol. 414. Research Notes Math. Chapman & Hall/CRC, Boca Raton, FL (2000) 252–262. [Google Scholar]
  23. V. Péron, Equivalent Boundary Conditions for an Elasto-Acoustic Problem set in a Domain with a Thin Layer. Rapport de recherche RR-8163, INRIA (2013). [Google Scholar]
  24. S.M. Rytov, Calcul du skin effect par la méthode des perturbations. J. Phys. 11 (1940) 233–242. [Google Scholar]
  25. T.B.A. Senior and J.L. Volakis, and Institution of Electrical Engineers. Approximate Boundary Conditions in Electromagnetics. IEE Electromagnetic Waves Series. Inst of Engineering & Technology (1995). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you