Free Access
Volume 48, Number 5, September-October 2014
Page(s) 1451 - 1472
Published online 13 August 2014
  1. R. Adams, Sobolev Spaces, vol. 65 of Pure and Appl. Math. Academic Press, New York (1975). [Google Scholar]
  2. C. Alboin, J. Jaffré, J. Roberts and C. Serres, Domain decomposition for flow in porous media with fractures, in Proc. of the 11th Int. Conf. on Domain Decomposition Methods in Greenwich, England (1999). [Google Scholar]
  3. G. Allaire, Homogenization of the stokes flow in a connected porous medium. Asymptotic Anal. 2 (1989) 203–222. [MathSciNet] [Google Scholar]
  4. G. Allaire, One-phase newtonian flow, in Homogenization and Porous Media, vol. 6 of Interdisciplinary Appl. Math., edited by U. Hornung. Springer-Verlag, New York (1997) 45–69. [Google Scholar]
  5. Y. Amirat, Ecoulements en milieu poreux n’obeissant pas a la loi de darcy. RAIRO Modél. Math. Anal. Numér. 25 (1991) 273–306. [MathSciNet] [Google Scholar]
  6. P. Angot, F. Boyer and F. Hubert, Asymptotic and numerical modelling of flows in fractured porous media. ESAIM: M2AN 43 (2009) 239–275. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  7. M. Balhoff, A. Mikelic and M. Wheeler, Polynomial filtration laws for low reynolds number flows through porous media. Transport in Porous Media (2009). [Google Scholar]
  8. J. Bear, Dynamics of Fluids in Porous Media. American Elsevier Pub. Co., New York (1972). [Google Scholar]
  9. F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. RAIRO: Modél. Math. Anal. Numér. 8 (1974) 129–151. [Google Scholar]
  10. P. Fabrie, Regularity of the solution of Darcy−Forchheimer’s equation. Nonlinear Anal., Theory Methods Appl. 13 (1989) 1025–1049. [CrossRef] [Google Scholar]
  11. I. Faille, E. Flauraud, F. Nataf, S. Pegaz-Fiornet, F. Schneider and F. Willien, A new fault model in geological basin modelling, application to finite volume scheme and domain decomposition methods, in Finie Volumes for Complex Appl. III. Edited by R. Herbin and D. Kroner. Hermés Penton Sci. (2002) 543–550. [Google Scholar]
  12. P. Forchheimer, Wasserbewegung durch Boden. Z. Ver. Deutsch. Ing. 45 (1901) 1782–1788. [Google Scholar]
  13. N. Frih, J. Roberts and A. Saada, Un modèle darcy-frochheimer pour un écoulement dans un milieu poreux fracturé. ARIMA 5 (2006) 129–143. [Google Scholar]
  14. N. Frih, J. Roberts and A. Saada, Modeling fractures as interfaces: a model for forchheimer fractures. Comput. Geosci. 12 (2008) 91–104. [CrossRef] [MathSciNet] [Google Scholar]
  15. P. Knabner and G. Summ, Solvability of the mixed formulation for Darcy−Forchheimer flow in porous media. Submitted. [Google Scholar]
  16. V. Martin, J. Jaffré and J.E. Roberts, Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26 (2005) 1667–1691. [Google Scholar]
  17. R. Showalter and F. Morales, The narrow fracture approximation by channeled flow. J. Math. Anal. Appl. 365 (2010) 320–331. [CrossRef] [MathSciNet] [Google Scholar]
  18. G. Summ, Lösbarkeit un Diskretisierung der gemischten Formulierung für Darcy-Frochheimer-Fluss in porösen Medien. Ph.D. thesis. Friedrich-Alexander-Universität Erlangen-Nürnberg (2001). [Google Scholar]
  19. L. Tartar, Convergence of the homogenization process, in Non-homogeneous Media and Vibration Theory, vol. 127 of Lect. Notes Phys. Edited by E. Sancez-Palencia. Springer-Verlag (1980). [Google Scholar]
  20. E. Zeidler, Nonlinear function anaysis and its applications – Nonlinear monotone operators. Springer-Verlag, Berlin, Heidelberg, New York (1990). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you