Free Access
Issue
ESAIM: M2AN
Volume 48, Number 6, November-December 2014
Page(s) 1681 - 1699
DOI https://doi.org/10.1051/m2an/2014004
Published online 24 September 2014
  1. X. Antoine, A. Arnold, C. Besse, M. Ehrhardt and A. Schädle, A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun. Comp. Phys. 4 (2008) 729–796. [Google Scholar]
  2. X. Antoine, C. Besse and V. Mouysset, Numerical schemes for the simulation of the two-dimensional Schrödinger equation using non-reflecting boundary conditions. Math. Comp. 73 (2004) 1779–1799. [Google Scholar]
  3. A. Arnold, M. Ehrhardt and I. Sofronov, Discrete transparent boundary conditions for the Schrödinger equation: fast calculations, approximation and stability. Commun. Math. Sci. 1 (2003) 501–556. [CrossRef] [Google Scholar]
  4. J.F. Berger, M. Girod and D. Gogny, Microscopic analysis of collective dynamics in low energy fission. Nuclear Physics A 428 (1984) 23–36. [CrossRef] [Google Scholar]
  5. J.-F. Berger, M. Girod and D. Gogny, Time-dependent quantum collective dynamics applied to nuclear fission. Comp. Phys. Commun. 63 (1991) 365–374. [CrossRef] [Google Scholar]
  6. S. Blanes and P.C. Moan, Splitting methods for the time-dependent Schrödinger equation. Phys. Lett. A 265 (2000) 35–42. [CrossRef] [Google Scholar]
  7. C.R. Chinn, J.F. Berger, D. Gogny and M.S. Weiss, Limits on the lifetime of the shape isomer of 238U. Phys. Rev. C 45 (1984) 1700–1708. [CrossRef] [Google Scholar]
  8. L. Di Menza, Transparent and absorbing boundary conditions for the Schrödinger equation in a bounded domain. Numer. Funct. Anal. Optimiz. 18 (1997) 759–775. [CrossRef] [MathSciNet] [Google Scholar]
  9. B. Ducomet and A. Zlotnik, On stability of the Crank–Nicolson scheme with approximate transparent boundary conditions for the Schrödinger equation. Part I. Commun. Math. Sci. 4 (2006) 741–766. [CrossRef] [Google Scholar]
  10. B. Ducomet and A. Zlotnik, On stability of the Crank–Nicolson scheme with approximate transparent boundary conditions for the Schrödinger equation. Part II. Commun. Math. Sci. 5 (2007) 267–298. [CrossRef] [Google Scholar]
  11. B. Ducomet, A. Zlotnik and A. Romanova, On a splitting higher order scheme with discrete transparent boundary conditions for the Schrödinger equation in a semi-infinite parallelepiped. Appl. Math. Comp. To appear (2014). [Google Scholar]
  12. B. Ducomet, A. Zlotnik and I. Zlotnik, On a family of finite-difference schemes with discrete transparent boundary conditions for a generalized 1D Schrödinger equation. Kinetic Relat. Models 2 (2009), 151–179. [CrossRef] [Google Scholar]
  13. M. Ehrhardt and A. Arnold, Discrete transparent boundary conditions for the Schrödinger equation. Riv. Mat. Univ. Parma 6 (2001) 57–108. [Google Scholar]
  14. Z. Gao and S. Xie, Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional Schrödinger equations. Appl. Numer. Math. 61 (2011) 593–614. [CrossRef] [Google Scholar]
  15. L. Gauckler, Convergence of a split-step Hermite method for Gross-Pitaevskii equation. IMA J. Numer. Anal. 31 (2011) 396–415. [CrossRef] [MathSciNet] [Google Scholar]
  16. H. Goutte, J.-F. Berger, P. Casoly and D. Gogny, Microscopic approach of fission dynamics applied to fragment kinetic energy and mass distribution in 238U. Phys. Rev. C 71 (2005) 4316. [Google Scholar]
  17. H. Hofmann, Quantummechanical treatment of the penetration through a two-dimensional fission barrier. Nuclear Physics A 224 (1974) 116–139. [CrossRef] [Google Scholar]
  18. C. Lubich, On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations. Math. Comput. 77 (2008) 2141–2153. [Google Scholar]
  19. C. Lubich, From quantum to classical molecular dynamics. Reduced models and numerical analysis. Zürich Lect. Adv. Math. EMS, Zürich (2008). [Google Scholar]
  20. C. Neuhauser and M. Thalhammer, On the convergence of splitting methods for linear evolutionary Schrödinger equations involving an unbounded potential. BIT Numer. Math. 49 (2009) 199–215. [CrossRef] [Google Scholar]
  21. P. Ring, H. Hassman and J.O. Rasmussen, On the treatment of a two-dimensional fission model with complex trajectories. Nuclear Physics A 296 (1978) 50–76. [CrossRef] [Google Scholar]
  22. P. Ring and P. Schuck, The nuclear many-body problem. Theoret. Math. Phys. Springer-Verlag, New York, Heidelberg, Berlin (1980). [Google Scholar]
  23. S.G. Rohozinski, J. Dobaczewski, B. Nerlo-Pomorska, K. Pomorski and J. Srebny, Microscopic dynamic calculations of collective states in Xenon and Barium isotopes. Nuclear Physics A 292 (1978) 66–87. [Google Scholar]
  24. A. Schädle, Non-reflecting boundary conditions for the two-dimensional Schrödinger equation. Wave Motion 35 (2002) 181–188. [CrossRef] [Google Scholar]
  25. M. Schulte and A. Arnold, Discrete transparent boundary conditions for the Schrödinger equation, a compact higher order scheme. Kinetic Relat. Models 1 (2008) 101–125. [CrossRef] [Google Scholar]
  26. G. Strang, On the construction and comparison of difference scheme. SIAM J. Numer. Anal. 5 (1968) 506–517. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  27. J. Szeftel, Design of absorbing boundary conditions for Schrödinger equations in Rd. SIAM J. Numer. Anal. 42 (2004) 1527–1551. [CrossRef] [MathSciNet] [Google Scholar]
  28. N.N. Yanenko, The method of fractional steps: solution of problems of mathematical physics in several variables. Springer, New York (1971). [Google Scholar]
  29. S.B. Zaitseva and A.A. Zlotnik, Error analysis in L2(Q) for symmetrized locally one-dimensional methods for the heat equation. Russ. J. Numer. Anal. Math. Model. 13 (1998) 69–91. [CrossRef] [Google Scholar]
  30. S.B. Zaitseva and A.A. Zlotnik, Sharp error analysis of vector splitting methods for the heat equation. Comput. Math. Phys. 39 (1999) 448–467. [Google Scholar]
  31. A.A. Zlotnik, Some finite-element and finite-difference methods for solving mathematical physics problems with non-smooth data in n-dimensional cube. Sov. J. Numer. Anal. Math. Modell. 6 (1991) 421–451. [Google Scholar]
  32. A. Zlotnik and S. Ilyicheva, Sharp error bounds for a symmetrized locally 1D method for solving the 2D heat equation. Comput. Meth. Appl. Math. 6 (2006) 94–114. [CrossRef] [Google Scholar]
  33. A. Zlotnik and A. Romanova, On a Numerov–Crank–Nicolson-Strang scheme with discrete transparent boundary conditions for the Schrödinger equation on a semi-infinite strip. Appl. Numer. Math. To appear (2014). [Google Scholar]
  34. A.A. Zlotnik and I.A. Zlotnik, Family of finite-difference schemes with transparent boundary conditions for the nonstationary Schrödinger equation in a semi-infinite strip. Dokl. Math. 83 (2011) 12–18. [CrossRef] [MathSciNet] [Google Scholar]
  35. I.A. Zlotnik, Computer simulation of the tunnel effect. Moscow Power Engin. Inst. Bulletin 17 (2010) 10–28 (in Russian). [Google Scholar]
  36. I.A. Zlotnik, Family of finite-difference schemes with approximate transparent boundary conditions for the generalized nonstationary Schrödinger equation in a semi-infinite strip. Comput. Math. Phys. 51 (2011) 355–376. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you