Free Access
Volume 48, Number 6, November-December 2014
Page(s) 1701 - 1724
Published online 26 September 2014
  1. D. Aronson, The porous medium equation. Nonlinear Diffusion Problems, edited by A. Fasano, M. Primicerio. Lect. Notes Math. 1224 (1986) 1–46. [Google Scholar]
  2. S.F. Ashby, W.J. Bosl, R.D. Falgout, S.G. Smith, A.F. Tompson and T.J. Williams, A Numerical Simulation of Groundwater Flow and Contaminant Transport on the CRAY T3D and C90 Supercomputers. Int. J. High Performance Comput. Appl. 13 (1999) 80–93. [CrossRef] [Google Scholar]
  3. P. Basser and D. Jones, Diffusion-tensor mri: theory, experimental design and data analysis–a technical review. NMR Biomedicine 15 (2002) 456–467. [CrossRef] [Google Scholar]
  4. C. Beaulieu, The basis of anisotropic water diffusion in the nervous system–a technical review. NMR Biomedicine 15 (2002) 435–455. [Google Scholar]
  5. B. Berkowitz, Characterizing flow and transport in fractured geological media: A review. Adv. Water Resources 25 (2002) 861–884. [Google Scholar]
  6. P. Degond, F. Deluzet, A. Lozinski, J. Narski and C. Negulescu, Duality-based asymptotic-preserving method for highly anisotropic diffusion equations. Commun. Math. Sci. 10 (2012) 1–31. [CrossRef] [Google Scholar]
  7. P. Degond, A. Lozinski, J. Narski and C. Negulescu, An asymptotic-preserving method for highly anisotropic elliptic equations based on a micro-macro decomposition. J. Comput. Phys. 231 (2012) 2724–2740. [CrossRef] [Google Scholar]
  8. Y. Dubinskii, Some integral inequalities and the solvability of degenerate quasi-linear elliptic systems of differential equations. Matematicheskii Sbornik 106 (1964) 458–480. [Google Scholar]
  9. Y. Dubinskii, Weak convergence for nonlinear elliptic and parabolic equations. Matematicheskii Sbornik 109 (1965) 609–642. [Google Scholar]
  10. L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. Stud. Adv. Math. CRC press (1992). [Google Scholar]
  11. S. Günter, K. Lackner C. Tichmann, Finite element and higher order difference formulations for modelling heat transport in magnetised plasmas. J. Comput. Phys. 226 (2007) 2306–2316. [CrossRef] [Google Scholar]
  12. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer Ser. Comput. Math. Springer-Verlag, New York (1987). [Google Scholar]
  13. H. Jian and B. Song, Solutions of the anisotropic porous medium equation in Rn under an l1-initial value. Nonlinear Anal. 64 (2006) 2098–2111. [CrossRef] [MathSciNet] [Google Scholar]
  14. S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21 (1999) 441–454. [CrossRef] [MathSciNet] [Google Scholar]
  15. J. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Gauthier-Villars (1969). [Google Scholar]
  16. J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, New York (1972). [Google Scholar]
  17. H. Lutjens and J. Luciani, The xtor code for nonlinear 3d simulations of mhd instabilities in tokamak plasmas. J. Comput. Phys. 227 (2008) 6944–6966. [CrossRef] [Google Scholar]
  18. A. Mentrelli and C. Negulescu, Asymptotic preserving scheme for highly anisotropic, nonlinear diffusion equations J. Comput. Phys. 231 (2012) 8229–8245. [CrossRef] [Google Scholar]
  19. W. Park, E. Belova, G. Fu, X. Tang, H. Strauss L. Sugiyama, Plasma simulation studies using multilevel physics models. Phys. Plasmas 6 (1999) 1796. [CrossRef] [Google Scholar]
  20. P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion. Pattern Analysis and Machine Intelligence, IEEE Trans. 12 (1990) 629–639. [Google Scholar]
  21. M. Pierre, personal e-mail (2011). [Google Scholar]
  22. J. Narski, Anisotropic finite elements with high aspect ratio for an Asymptotic Preserving method for highly anisotropic elliptic equation. Preprint arXiv:1302.4269 (2013). [Google Scholar]
  23. J. Narski and M. Ottaviani, Asymptotic Preserving scheme for strongly anisotropic parabolic equations for arbitrary anisotropy direction. Preprint arXiv:1303.5219 (2013). [Google Scholar]
  24. J. Simon, Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. 146 (1987) 65–96. [Google Scholar]
  25. P. Tamain, Etude des flux de matière dans le plasma de bord des tokamaks. Ph.D. Thesis, Marseille 1 (2007). [Google Scholar]
  26. J. Vázquez, The porous medium equation: mathematical theory. Oxford University Press, USA (2007). [Google Scholar]
  27. J. Weickert, Anisotropic diffusion in image processing. European Consortium for Mathematics in Industry. B.G. Teubner, Stuttgart (1998). [Google Scholar]
  28. J. Wesson, Tokamaks. Oxford University Press, New York (1987). [Google Scholar]
  29. O.C. Zienkiewicz and R.L. Taylor, The finite element method. Vol. 1. Butterworth-Heinemann, Oxford (2000). [Google Scholar]
  30. J. Wloka, Partial diflerential equations. Cambridge University Press (1987). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you