Free Access
Issue
ESAIM: M2AN
Volume 48, Number 6, November-December 2014
Page(s) 1615 - 1638
DOI https://doi.org/10.1051/m2an/2014012
Published online 09 September 2014
  1. N. Altmüller and L. Grüne, Distributed and boundary model predictive control for the heat equation. GAMM Mitteilungen 35 (2012) 131–145. [CrossRef] [MathSciNet] [Google Scholar]
  2. A.C. Antoulas, Approximation of Large-Scale Dynamical Systems. Advances in Design and Control. SIAM (2005). [Google Scholar]
  3. J.A. Atwell and B.B. King, Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations. Math. Comput. Model. 33 (2001) 1–19. [CrossRef] [Google Scholar]
  4. R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: Basic concept. SIAM J. Control Optim. 39 (2000) 113–132. [Google Scholar]
  5. P. Benner, V. Mehrmann and D. Sorensen, Dimension reduction of large-scale systems, vol. 45 of Lect. Notes Computational Science and Engineering. Berlin, Springer (2005). [Google Scholar]
  6. L. Dedè, Reduced basis method and a posteriori error estimation for parametrized linear-quadratic optimal control problems. SIAM J. Sci. Comput. 32 (2010) 997–1019. [CrossRef] [Google Scholar]
  7. L. Dedè, Reduced basis method and error estimation for parametrized optimal control problems with control constraints. J. Sci. Comput. 50 (2012) 287–305. [CrossRef] [Google Scholar]
  8. J. Eftang, D. Huynh, D. Knezevic and A. Patera, A two-step certified reduced basis method. J. Sci. Comput. 51 (2012) 28–58. [CrossRef] [Google Scholar]
  9. A.-L. Gerner and K. Veroy, Certified reduced basis methods for parametrized saddle point problems. SIAM J. Sci. Comput. 34 (2012) A2812–A2836. [CrossRef] [Google Scholar]
  10. M.A. Grepl and M. Kärcher, Reduced basis a posteriori error bounds for parametrized linear-quadratic elliptic optimal control problems. C.R. Math. 349 (2011) 873–877. [CrossRef] [Google Scholar]
  11. M.A. Grepl and A.T. Patera, A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM: M2AN 39 (2005) 157–181. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  12. M. Gunzburger and A. Kunoth, Space-time adaptive wavelet methods for optimal control problems constrained by parabolic evolution equations. SIAM J. Control Optim. (2011) 1150–1170. [Google Scholar]
  13. B. Haasdonk and M. Ohlberger, Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM: M2AN 42 (2008) 277–302. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  14. W. Hager, Multiplier methods for nonlinear optimal control. SIAM J. Numer. Anal. 27 (1990) 1061–1080. [CrossRef] [Google Scholar]
  15. M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints, vol. 23 of Math. Model. Theor. Appl. Springer (2009). [Google Scholar]
  16. D.B.P. Huynh, G. Rozza, S. Sen and A.T. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C.R. Math. 345 (2007) 473–478. [Google Scholar]
  17. L. Iapichino, S. Ulbrich and S. Volkwein. Multiobjective PDE-constrained optimization using the reduced-basis method. Technical report, Universität Konstanz (2013). [Google Scholar]
  18. K. Ito and K. Kunisch, Receding horizon optimal control for infinite dimensional systems. ESAIM: COCV 8 (2002) 741–760. [CrossRef] [EDP Sciences] [Google Scholar]
  19. K. Ito and K. Kunisch, Reduced-order optimal control based on approximate inertial manifolds for nonlinear dynamical systems. SIAM J. Numer. Anal. 46 (2008) 2867–2891. [CrossRef] [Google Scholar]
  20. K. Ito and S.S. Ravindran, A reduced-order method for simulation and control of fluid flows. J. Comput. Phys. 143 (1998) 403–425. [CrossRef] [MathSciNet] [Google Scholar]
  21. K. Ito and S.S. Ravindran, A reduced basis method for optimal control of unsteady viscous flows. Int. J. Comput. Fluid D. 15 (2001) 97–113. [CrossRef] [MathSciNet] [Google Scholar]
  22. M. Kärcher, The reduced-basis method for parametrized linear-quadratic elliptic optimal control problems. Master’s thesis, Technische Universität München (2011). [Google Scholar]
  23. M. Kärcher and M.A. Grepl. A certified reduced basis method for parametrized elliptic optimal control problems. ESAIM: COCV 20 (2014) 416–441. [CrossRef] [EDP Sciences] [Google Scholar]
  24. K. Kunisch and S. Volkwein, Control of the Burgers equation by a reduced-order approach using proper orthogonal decomposition. J. Optim. Theory Appl. 102 (1999) 345–371. [CrossRef] [MathSciNet] [Google Scholar]
  25. K. Kunisch, S. Volkwein and L. Xie, HJB-POD based feedback design for the optimal control of evolution problems. SIAM J. Appl. Dyn. Syst. 3 (2004) 701–722. [Google Scholar]
  26. G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich and S. Ulbrich, Constrained Optimization and Optimal Control for Partial Differential Equations. International Series of Numerical Mathematics. Birkhäuser Basel (2012). [Google Scholar]
  27. J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer (1971). [Google Scholar]
  28. K. Malanowski, C. Buskens and H. Maurer, Convergence of approximations to nonlinear optimal control problems, vol. 195. CRC Press (1997) 253–284. [Google Scholar]
  29. F. Negri, G. Rozza, A. Manzoni and A. Quarteroni, Reduced basis method for parametrized elliptic optimal control problems. SIAM J. Sci. Comput. 35 (2013) A2316–A2340. [Google Scholar]
  30. I. B. Oliveira, A “HUM” Conjugate Gradient Algorithm for Constrained Nonlinear Optimal Control: Terminal and Regulator Problems. Ph.D. thesis, Massachusetts Institute of Technology (2002). [Google Scholar]
  31. C. Prud’homme, D.V. Rovas, K. Veroy, L. Machiels, Y. Maday, A.T. Patera and G. Turinici. Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods. J. Fluid. Eng. 124 (2002) 70–80. [Google Scholar]
  32. A.M. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, vol. 23 of Springer Ser. Comput. Math. Springer (2008). [Google Scholar]
  33. G. Rozza, D.B.P. Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Method. E. 15 (2008) 229–275. [Google Scholar]
  34. G. Rozza and K. Veroy, On the stability of the reduced basis method for Stokes equations in parametrized domains. Comput. Methods Appl. Mech. Engrg. 196 (2007) 1244–1260. [Google Scholar]
  35. T. Tonn, K. Urban and S. Volkwein, Comparison of the reduced-basis and pod a posteriori error estimators for an elliptic linear-quadratic optimal control problem. Math. Comput. Model. Dyn. 17 (2011) 355–369. [CrossRef] [MathSciNet] [Google Scholar]
  36. F. Tröltzsch and S. Volkwein, POD a-posteriori error estimates for linear-quadratic optimal control problems. Comput. Optim. Appl. 44 (2009) 83–115. [CrossRef] [Google Scholar]
  37. K. Urban and A.T. Patera, A new error bound for reduced basis approximation of parabolic partial differential equations. C. R. Math. 350 (2012) 203–207. [Google Scholar]
  38. K. Veroy, D.V. Rovas and A.T. Patera, A posteriori error estimation for reduced-basis approximation of parametrized elliptic coercive partial differential equations: “convex inverse” bound conditioners. Special Volume: A tribute to J.L. Lions. ESAIM: COCV 8 (2002) 1007–1028. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you