Free Access
Issue
ESAIM: M2AN
Volume 48, Number 6, November-December 2014
Page(s) 1583 - 1613
DOI https://doi.org/10.1051/m2an/2014011
Published online 09 September 2014
  1. G. Bal, Transport through diffusive and nondiffusive regions, embedded objects and clear layers. SIAM J. Appl. Math. 62 (2002) 1677–1697. [CrossRef] [Google Scholar]
  2. M. Bellieud, Homogenization of evolution problems for a composite medium with very small and heavy inclusions. ESAIM: COCV 11 (2005) 266–284. [CrossRef] [EDP Sciences] [Google Scholar]
  3. M. Bellieud, A notion of capacity related to elasticity. Applications to homogenization. Arch. Rational Mech. Anal. 203 (2012) 137–187. [CrossRef] [Google Scholar]
  4. M. Bellieud, C. Licht and S. Orankitjaroen, Nonlinear capacitary problems for a non periodic distribution of fibers. Appl. Math. Res. Express 2014 (2014) 1–51. [Google Scholar]
  5. F. Boyer and P. Fabrie, Éléments d’analyse pour l’étude de quelques modèles d’écoulements de fluides visqueux incompressibles. Math. Appl., vol. 52. Springer Verlag, Berlin, Heidelberg (2006). [Google Scholar]
  6. C.E. Brennen, Fundamentals of Multiphase Flows. Cambridge University Press (2005). [Google Scholar]
  7. H. Brezis, Analyse Fonctionnelle. Théorie et Applications. Masson, Paris (1987). [Google Scholar]
  8. D. Cioranescu and F. Murat, Un terme étrange venu d’ailleurs. In Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar vol. II, Paris 1979-1980; vol. 60 of Res. Notes Math. Pitman, Boston, London (1982) 98–138. [Google Scholar]
  9. L. Desvillettes, F. Golse and V. Ricci, The Mean-Field Limit for Solid Particles in a Navier-Stokes Flow. J. Stat. Phys. 131 (2008) 941–967. [CrossRef] [Google Scholar]
  10. F. Fichot, F. Duval, N. Trégourès, C. Béchaud and M. Quintard, The impact of thermal non-equilibrium and large-scale 2D/3D effects on debris bed reflooding and coolability. Nucl. Eng. Design 236 (2006) 2144–2163. [CrossRef] [Google Scholar]
  11. V.A. L’vov and E. Ya. Hruslov, Perturbations of a viscous incompressible fluid by small particles. Theor. Appl. Quest. Differ. Equ. Algebra 267 (1978) 173–177. [Google Scholar]
  12. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1. Dunod, Paris (1968). [Google Scholar]
  13. A. Mikelic and M. Primicerio, Homogenization of heat conduction in materials with periodic inclusions of a perfect conductor. In Progress in partial differential equations: calculus of variations, applications. Pont-Mousson, 1991, vol. 267 of Pitman Res. Notes Math. Ser. Longman Sci. Tech., Harlow (1992) 244–256. [Google Scholar]
  14. A. Mikelic, M. Primicerio, Homogenization of the heat equation for a domain with a network of pipes with a well-mixed fluid. Ann. Mat. Pura Appl. 166 (1994) 227–251. [CrossRef] [MathSciNet] [Google Scholar]
  15. F. Petit, F. Fichot, M. Quintard, Ecoulement diphasique en milieu poreux: modèle à non-équilibre local. Int. J. Therm. Sci. 38 (1999) 239–249. [CrossRef] [Google Scholar]
  16. P.-A. Raviart and J.-M. Thomas, Introduction à l’analyse numérique des équations aux dérivées partielles. Masson, Paris, 1983. [Google Scholar]
  17. J. Wloka, Partial Differential Equations. Cambridge University Press, Cambridge (1987). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you