Free Access
Issue |
ESAIM: M2AN
Volume 48, Number 6, November-December 2014
|
|
---|---|---|
Page(s) | 1725 - 1755 | |
DOI | https://doi.org/10.1051/m2an/2014017 | |
Published online | 26 September 2014 |
- Adimurthi and G.D. Veerappa Gowda, Conservation laws with discontinuous flux. J. Math. Kyoto Univ. 43 (2003) 27–70. [MathSciNet] [Google Scholar]
- Adimurthi, R. Dutta, Shyam Sundar Ghoshal and G.D. Veerappa Gowda, Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux. Commun. Pure Appl. Math. 64 (2011) 84–115. [Google Scholar]
- Adimurthi, J. Jaffré and G.D. Veerappa Gowda, Godunov type methods for scalar conservation laws with flux function discontinuous in the space variable. SIAM J. Numer. Anal. 42 (2004) 179–208. [CrossRef] [MathSciNet] [Google Scholar]
- Adimurthi, S. Mishra and G.D. Veerappa Gowda, Explicit Hopf-Lax type formulas for Hamilton-Jacobi equations and conservation laws with discontinuous coefficients. J. Differ. Equ. 241 (2007) 1–31. [CrossRef] [MathSciNet] [Google Scholar]
- Adimurthi, S. Mishra and G.D. Veerappa Gowda, Optimal entropy solutions for conservation laws with discontinuous flux-functions. J. Hyperbolic Differ. Equ. 2 (2005) 783–837. [CrossRef] [MathSciNet] [Google Scholar]
- B. Andreianov, K.H. Karlsen and N.H. Risebro, A theory of L1-dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Ration. Mech. Anal. 201 (2011) 27–86. [Google Scholar]
- R. Bürger, K.H. Karlsen, N.H. Risebro and J.D. Towers, Well-posedness in BVt and convergence of a difference scheme for continuous sedimentation in ideal clarifier thickener units. Numer. Math. 97 (2004) 25–65. [CrossRef] [MathSciNet] [Google Scholar]
- R. Bürger, K.H. Karlsen, N.H. Risebro and J. D. Towers, Monotone difference approximations for the simulation of clarifier-thickener units. Comput. Vis. Sci. 6 (2004) 83–91. [CrossRef] [Google Scholar]
- R. Bürger, K.H. Karlsen and J. D. Towers, An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections. SIAM J. Numer. Anal. 47 (2009) 1684–1712. [CrossRef] [Google Scholar]
- Crandall, G. Michael and Majda, Andrew, Monotone difference approximations for scalar conservation laws. Math. Comput. 34 (1980) 1–21. [CrossRef] [MathSciNet] [Google Scholar]
- S. Diehl, Conservation Laws with Applications to Continuous Sedimentation, Doctoral Dissertation. Lund University, Lund, Sweden (1995). [Google Scholar]
- S. Diehl, A conservation laws with point source and discontinuous flux function modelling continuous sedimentation. SIAM J. Appl. Math. 56 (1996) 388–419. [CrossRef] [Google Scholar]
- T. Gimse and N.H. Risebro, Riemann problems with discontinuous flux function, Proc. of 3rd Internat. Conf. Hyperbolic Problems, Studentlitteratur, Uppsala (1991) 488–502. [Google Scholar]
- Jaffré, Jérôme and S. Mishra, On the upstream mobility scheme for two-phase flow in porous media. Comput. Geosci. 14 (2010) 105–124 [CrossRef] [Google Scholar]
- E. Kaasschieter, Solving the Buckley-Leverret equation with gravity in a heterogeneous porous media. Comput. Geosci. 3 (1999) 23–48. [CrossRef] [Google Scholar]
- K.H. Karlsen and J.D. Towers, Convergence of the Lax−Friedrichs scheme and stability for conservation laws with a discontinuous space-time dependent flux. Chinese Ann. Math. Ser. B 25 (2004) 287–318. [Google Scholar]
- C. Klingenberg and N.H. Risebro, Convex conservation laws with discontinuous coefficients, existence, uniqueness and asymptotic behavior. Commun. Partial Differ. Equ. 20 (1995) 1959–1990. [Google Scholar]
- B. Keyfitz, Solutions with shocks: An example of an L1-contractive semi-group. Commun. Pure Appl. Math. 24 (1971) 125–132. [CrossRef] [Google Scholar]
- S. Mishra, Analysis and Numerical approximation of conservation laws with discontinuous coefficients, Ph.D. thesis, Indian Institute of Science, Bangalore (2005). [Google Scholar]
- S. Mochon, An analysis for the traffic on highways with changing surface conditions. Math. Model. 9 (1987) 1–11. [Google Scholar]
- H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87 (1990) 408–463. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- N. Seguin and J. Vovelle, Analysis and approximation of a scalar conservation law with a flux function with discontinuous coefficients. Math. Models Methods Appl. Sci. 13 (2003) 221–257. [CrossRef] [Google Scholar]
- B. Temple and E. Isaacson, Nonlinear resonance in systems of conservation laws. SIAM J. Appl. Math. 52 (1992) 1260–1278. [CrossRef] [MathSciNet] [Google Scholar]
- J.D. Towers, A difference scheme for conservation laws with a discontinuous flux: the nonconvex case. SIAM J. Numer. Anal. 39 (2001) 1197–1218. [CrossRef] [MathSciNet] [Google Scholar]
- J.D. Towers, Convergence of a difference scheme for conservation laws with a discontinuous flux. SIAM J. Numer. Anal. 38 (2000) 681–698. [Google Scholar]
- S. Tveit, Numerical methods for hyperbolic conservation laws with discontinuous flux. Master of Science Thesis in Reservoir Mechanics, University of Bergen (2011). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.