Free Access
Issue
ESAIM: M2AN
Volume 48, Number 6, November-December 2014
Page(s) 1807 - 1857
DOI https://doi.org/10.1051/m2an/2014021
Published online 10 October 2014
  1. G. Ansanay-Alex, F. Babik, J.-C. Latché and D. Vola, An L-stable approximation of the Navier-Stokes convection operator for low-order non-conforming finite elements. Int. J. Numer. Methods Fluids 66 (2011) 555–580. [Google Scholar]
  2. F. Archambeau, J.-M. Hérard and J. Laviéville, Comparative study of pressure-correction and Godunov-type schemes on unsteady compressible cases. Comput. Fluids 38 (2009) 1495–1509. [Google Scholar]
  3. R. Berry, Notes on PCICE method: simplification, generalization and compressibility properties. J. Comput. Phys. 215 (2006) 6–11. [Google Scholar]
  4. H. Bijl and P. Wesseling, A unified method for computing incompressible and compressible flows in boundary-fitted coordinates. J. Comput. Phys. 141 (1998) 153–173. [Google Scholar]
  5. CALIFS. A software components library for the computation of reactive turbulent flows. Available on https://gforge.irsn.fr/gf/project/isis. [Google Scholar]
  6. V. Casulli and D. Greenspan, Pressure method for the numerical solution of transient, compressible fluid flows. Int. J. Numer. Methods Fluids 4 (1984) 1001–1012. [Google Scholar]
  7. A. Chorin, Numerical solution of the Navier-Stokes equations. Math. Comput. 22 (1968) 745–762. [Google Scholar]
  8. P.G. Ciarlet, Basic error estimates for elliptic problems, in vol. II of Handb. Numer. Anal. Edited by P. Ciarlet and J. Lions. North Holland (1991) 17–351. [Google Scholar]
  9. M. Crouzeix and P. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Série Rouge 7 (1973) 33–75. [Google Scholar]
  10. I. Demirdžić, v. Lilek and M. Perić, A collocated finite volume method for predicting flows at all speeds. Int. J. Numer. Methods Fluids 16 (1993) 1029–1050. [Google Scholar]
  11. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in vol. VII of Handb. Numer. Anal. Edited by P. Ciarlet and J. Lions. North Holland (2000) 713–1020. [Google Scholar]
  12. R. Eymard, T. Gallouët, R. Herbin and J.-C. Latché, Convergence of the MAC scheme for the compressible Stokes equations. SIAM J. Numer. Anal. 48 (2010) 2218–2246. [Google Scholar]
  13. E. Feireisl, Dynamics of Viscous Compressible Flows. In vol. 26 of Oxford Lect. Ser. Math. Appl. Oxford University Press (2004). [Google Scholar]
  14. T. Gallouët, L. Gastaldo, R. Herbin and J.-C. Latché, An unconditionally stable pressure correction scheme for compressible barotropic Navier-Stokes equations. Math. Model. Numer. Anal. 42 (2008) 303–331. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  15. L. Gastaldo, R. Herbin, W. Kheriji, C. Lapuerta and J.-C. Latché, Staggered discretizations, pressure correction schemes and all speed barotropic flows, in Finite Volumes for Complex Applications VI Problems and Perspectives Vol. 2, Prague, Czech Republic (2011) 39–56. [Google Scholar]
  16. L. Gastaldo, R. Herbin and J.-C. Latché, A discretization of phase mass balance in fractional step algorithms for the drift-flux model. IMA J. Numer. Anal. 3 (2011) 116–146. [CrossRef] [Google Scholar]
  17. L. Gastaldo, R. Herbin, J.-C. Latché and N. Therme, Explicit high order staggered schemes for the Euler equations (2014). [Google Scholar]
  18. D. Grapsas, R. Herbin, W. Kheriji and J.-C. Latché, An unconditionally stable pressure correction scheme for the compressible Navier-Stokes equations. Submitted (2014). [Google Scholar]
  19. J. Guermond, P. Minev and J. Shen, An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Engrg. 195 (2006) 6011–6045. [Google Scholar]
  20. J. Guermond and R. Pasquetti, Entropy-based nonlinear viscosity for Fourier approximations of conservation laws. C.R. Acad. Sci. Paris – Série I – Analyse Numérique 346 (2008) 801–806. [CrossRef] [Google Scholar]
  21. J. Guermond, R. Pasquetti and B. Popov, Entropy viscosity method for nonlinear conservation laws. J. Comput. Phys. 230 (2011) 4248–4267. [Google Scholar]
  22. J.-L. Guermond and L. Quartapelle, A projection FEM for variable density incompressible flows. J. Comput. Phys. 165 (2000) 167–188. [Google Scholar]
  23. F. Harlow and A. Amsden, Numerical calculation of almost incompressible flow. J. Comput. Phys. 3 (1968) 80–93. [Google Scholar]
  24. F. Harlow and A. Amsden, A numerical fluid dynamics calculation method for all flow speeds. J. Comput. Phys. 8 (1971) 197–213. [Google Scholar]
  25. F. Harlow and J. Welsh, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8 (1965) 2182–2189. [Google Scholar]
  26. R. Herbin, W. Kheriji and J.-C. Latché, Staggered schemes for all speed flows. ESAIM Proc. 35 (2012) 22–150. [CrossRef] [Google Scholar]
  27. R. Herbin, W. Kheriji and J.-C. Latché, Pressure correction staggered schemes for barotropic monophasic and two-phase flows. Comput. Fluids 88 (2013) 524–542. [Google Scholar]
  28. R. Herbin and J.-C. Latché, Kinetic energy control in the MAC discretization of the compressible Navier-Stokes equations. Int. J. Finites Volumes 7 (2010). [Google Scholar]
  29. R. Herbin, J.-C. Latché and K. Mallem, Convergence of the MAC scheme for the steady-state incompressible Navier-Stokes equations on non-uniform grids. Proc. of Finite Volumes for Complex Applications VII Problems and Perspectives, Berlin, Germany (2014). [Google Scholar]
  30. R. Herbin, J.-C. Latché and T. Nguyen, An explicit staggered scheme for the shallow water and Euler equations. Submitted (2013). [Google Scholar]
  31. R. Herbin, J.-C. Latché and T. Nguyen, Explicit staggered schemes for the compressible euler equations. ESAIM Proc. 40 (2013) 83–102. [CrossRef] [Google Scholar]
  32. B. Hjertager, Computer simulation of reactive gas dynamics. Vol. 5 of Modeling, Identification and Control (1985) 211–236. [Google Scholar]
  33. Y. Hou and K. Mahesh, A robust, colocated, implicit algorithm for direct numerical simulation of compressible, turbulent flows. J. Comput. Phys. 205 (2005) 205–221. [Google Scholar]
  34. R. Issa, Solution of the implicitly discretised fluid flow equations by operator splitting. J. Comput. Phys. 62 (1985) 40–65. [Google Scholar]
  35. R. Issa, A. Gosman and A. Watkins, The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme. J. Comput. Phys. 62 (1986) 66–82. [Google Scholar]
  36. R. Issa and M. Javareshkian, Pressure-based compressible calculation method utilizing total variation diminishing schemes. AIAA J. 36 (1998) 1652–1657. [Google Scholar]
  37. S. Kadioglu, M. Sussman, S. Osher, J. Wright and M. Kang, A second order primitive preconditioner for solving all speed multi-phase flows. J. Comput. Phys. 209 (2005) 477–503. [Google Scholar]
  38. K. Karki and S. Patankar, Pressure based calculation procedure for viscous flows at all speeds in arbitrary configurations. AIAA J. 27 (1989) 1167–1174. [Google Scholar]
  39. M. Kobayashi and J. Pereira. Characteristic-based pressure correction at all speeds. AIAA J. 34 (1996) 272–280. [Google Scholar]
  40. A. Kurganov and Y. Liu, New adaptative artificial viscosity method for hyperbolic systems of conservation laws. J. Comput. Phys. 231 (2012) 8114–8132. [Google Scholar]
  41. N. Kwatra, J. Su, J. Grétarsson and R. Fedkiw, A method for avoiding the acoustic time step restriction in compressible flow. J. Comput. Phys. 228 (2009) 4146–4161. [Google Scholar]
  42. J.-C. Latché and K. Saleh, A convergent staggered scheme for variable density incompressible Navier-Stokes equations. Submitted (2014). [Google Scholar]
  43. F.-S. Lien, A pressure-based unstructured grid method for all-speed flows. Int. J. Numer. Methods Fluids 33 (2000) 355–374. [Google Scholar]
  44. P.-L. Lions, Mathematical Topics in Fluid Mechanics – Volume 2 – Compressible Models. Vol. 10 of Oxford Lect. Ser. Math. Appl. Oxford University Press (1998). [Google Scholar]
  45. A. Majda and J. Sethian. The derivation and numerical solution of the equations for zero Mach number solution. Combust. Sci. Techn. 42 (1985) 185–205. [CrossRef] [Google Scholar]
  46. R. Martineau and R. Berry, The pressure-corrected ICE finite element method for compressible flows on unstructured meshes. J. Comput. Phys. 198 (2004) 659–685. [Google Scholar]
  47. J. McGuirk and G. Page, Shock capturing using a pressure-correction method. AIAA J. 28 (1990) 1751–1757. [Google Scholar]
  48. F. Moukalled and M. Darwish, A high-resolution pressure-based algorithm for fluid flow at all speeds. J. Comput. Phys. 168 (2001) 101–133. [Google Scholar]
  49. V. Moureau, C. Bérat and H. Pitsch, An efficient semi-implicit compressible solver for large-eddy simulations. J. Comput. Phys. 226 (2007) 1256–1270. [Google Scholar]
  50. K. Nerinckx, J. Vierendeels and E. Dick, Mach-uniformity through the coupled pressure and temperature correction algorithm. J. Comput. Phys. 206 (2005) 597–623. [Google Scholar]
  51. K. Nerinckx, J. Vierendeels and E. Dick. A Mach-uniform algorithm: coupled versus segregated approach. J. Comput. Phys. 224 (2007) 314–331. [Google Scholar]
  52. P. Nithiarasu, R. Codina and O. Zienkiewicz, The Characteristic-Based Split (CBS) scheme – A unified approach to fluid dynamics. Int. J. Numer. Methods Engrg. 66 (2006) 1514–1546. [CrossRef] [MathSciNet] [Google Scholar]
  53. A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow. Vol. 27 of Oxford Lect. Ser. Math. Appl. Oxford University Press (2004). [Google Scholar]
  54. G. Patnaik, R. Guirguis, J. Boris and E. Oran, A barely implicit correction for flux-corrected transport. J. Comput. Phys. 71 (1987) 1–20. [Google Scholar]
  55. PELICANS, Collaborative development environment. Available on https://gforge.irsn.fr/gf/project/pelicans. [Google Scholar]
  56. L. Piar, F. Babik, R. Herbin and J.-C. Latché, A formally second order cell centered scheme for convection-diffusion equations on unstructured nonconforming grids. Int. J. Numer. Methods Fluids 71 (2013) 873–890. [Google Scholar]
  57. E. Politis and K. Giannakoglou, A pressure-based algorithm for high-speed turbomachinery flows. Int. J. Numer. Methods Fluids 25 (1997) 63–80. [Google Scholar]
  58. R. Rannacher and S. Turek. Simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differ. Equ. 8 (1992) 97–111. [Google Scholar]
  59. E. Sewall and D. Tafti, A time-accurate variable property algorithm for calculating flows with large temperature variations. Comput. Fluids 37 (2008) 51–63. [Google Scholar]
  60. R. Temam, Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires II. Arch. Rat. Mech. Anal. 33 (1969) 377–385. [CrossRef] [MathSciNet] [Google Scholar]
  61. S. Thakur and J. Wright, A multiblock operator-splitting algorithm for unsteady flows at all speeds in complex geometries. Int. J. Numer. Methods Fluids 46 (2004) 383–413. [Google Scholar]
  62. N. Therme and Z. Chady, Comparison of consistent explicit schemes on staggered and colocated meshes (2014). [Google Scholar]
  63. E. Toro, Riemann solvers and numerical methods for fluid dynamics – A practical introduction, 3rd edition. Springer (2009). [Google Scholar]
  64. D. Van der Heul, C. Vuik and P. Wesseling, Stability analysis of segregated solution methods for compressible flow. Appl. Numer. Math. 38 (2001) 257–274. [Google Scholar]
  65. D. Van der Heul, C. Vuik and P. Wesseling. A conservative pressure-correction method for flow at all speeds. Comput. Fluids 32 (2003) 1113–1132. [Google Scholar]
  66. J. Van Dormaal, G. Raithby and B. McDonald, The segregated approach to predicting viscous compressible fluid flows. Trans. ASME 109 (1987) 268–277. [Google Scholar]
  67. D. Vidović, A. Segal and P. Wesseling, A superlinearly convergent Mach-uniform finite volume method for the Euler equations on staggered unstructured grids. J. Comput. Phys. 217 (2006) 277–294. [Google Scholar]
  68. C. Wall, C. Pierce and P. Moin, A semi-implicit method for resolution of acoustic waves in low Mach number flows. J. Comput. Phys. 181 (2002) 545–563. [Google Scholar]
  69. I. Wenneker, A. Segal and P. Wesseling, A Mach-uniform unstructured staggered grid method. Int. J. Numer. Methods Fluids 40 (2002) 1209–1235. [Google Scholar]
  70. C. Xisto, J. Páscoa, P. Oliveira and D. Nicolini, A hybrid pressure-density-based algorithm for the Euler equations at all Mach number regimes. Int. J. Numer. Methods Fluids, online (2011). [Google Scholar]
  71. S. Yoon and T. Yabe, The unified simulation for incompressible and compressible flow by the predictor-corrector scheme based on the CIP method. Comput. Phys. Commun. 119 (1999) 149–158. [Google Scholar]
  72. O. Zienkiewicz and R. Codina, A general algorithm for compressible and incompressible flow – Part I. The split characteristic-based scheme. Int. J. Numer. Methods Fluids 20 (1995) 869–885. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you