Free Access
Volume 49, Number 1, January-February 2015
Page(s) 101 - 140
Published online 14 January 2015
  1. T.B. Anderson and R. Jackson, A fluid mechanical description of fluidized beds. Ind. Eng. Chem. Fundam. 6 (1967) 527–539. [Google Scholar]
  2. K. Anderson, S. Sundaresan and R. Jackson, Instabilities and the formation of bubbles in fluidized beds. J. Fluid Mech. 303 (1995) 327–366. [CrossRef] [Google Scholar]
  3. T. Aste, Circle, sphere, and drop packings. Phys. Rev. E 53 (1996) 2571. [CrossRef] [MathSciNet] [Google Scholar]
  4. F. Boyer, O. Pouliquen and E. Guazzelli, Dense suspensions in rotating-rod flows: normal stresses and particle migration. J. Fluid Mech. 686 (2011) 5–25. [CrossRef] [Google Scholar]
  5. F. Bouchut and M. Westdickenberg, Gravity driven shallow water models for arbitrary topography. Commun. Math. Sci. 2 (2004) 359–389. [Google Scholar]
  6. F. Bouchut, A. Mangeney-Castelnau, B. Perthame and J.-P. Vilotte, A new model of Saint Venant and Savage-Hutter type for gravity driven shallow water flows. C.R. Acad. Sci. Paris, Sér. I 336 (2003) 531–536. [Google Scholar]
  7. F. Bouchut, E. Fernandez-Nieto, A. Mangeney and P.-Y. Lagrée, On new erosion models of Savage-Hutter type for avalanches. Acta Mech. 199 (2008) 181–208. [CrossRef] [Google Scholar]
  8. M. Farin, A. Mangeney and O. Roche, Dynamics, deposit and erosion processes in granular collapse over sloping beds. J. Geophys. Res. 119 (2013) 504–532. [CrossRef] [Google Scholar]
  9. P. Favreau, A. Mangeney, A. Lucas, G. Crosta and F. Bouchut, Numerical modeling of landquakes. Geophys. Res. Lett. 37 (2010) L15305. [CrossRef] [Google Scholar]
  10. D.L. George and R.M. Iverson, A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure. Italian J. Engrg. Geol. Environ. (2011) DOI:10.4408/IJEGE.2011-03.B-047. [Google Scholar]
  11. M. Goodman and S. Cowin, Two problems in the gravity flow of granular materials. J. Fluid Mech. 45 (1971) 321–339. [CrossRef] [Google Scholar]
  12. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics. Kluwer Academic Publishers (1983). [Google Scholar]
  13. H.J. Herrmann, R. Mahmoodi Baram and M. Wackenhut, Searching for the perfect packing. Phys. A 330 (2003) 77–82. [Google Scholar]
  14. O. Hungr and S.G. Evans, Entrainment of debris in rock avalanches: An analysis of a long run-out mechanism. Bull. Geol. Soc. Am. 116 (2004) 1240–1252. [CrossRef] [Google Scholar]
  15. R.M. Iverson, The physics of debris flows, Rev. Geophys. 35 (1997) 245–296. [Google Scholar]
  16. R.M. Iverson, R.P. Denlinger, Flow of variably fluidized granular masses across three-dimensional terrain 1: Coulomb mixture theory. J. Geophys. Res. 106 (2001) 537–552. [CrossRef] [Google Scholar]
  17. R.M. Iverson, M. Logan, R.G. LaHusen and M. Berti, The perfect debris flow? aggregated results from 28 large-scale experiments. J. Geophys. Res. 115 (2010) F03005. DOI:10.1029/2009JF001514. [Google Scholar]
  18. R.M. Iverson, M.E. Reid, M. Logan, R.G. LaHusen, J.W. Godt and J.P. Griswold, Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nature Geoscience 4 (2011) 116–121. [CrossRef] [Google Scholar]
  19. R. Jackson, The Dynamics of Fluidized Particles. Cambridges Monographs on Mechanics (2000). [Google Scholar]
  20. G. Jhonson, M. Massoudi and K.R. Rajagopal, A review of interaction mechanisms in fluidsolid flows. Technical Report. DOE/PETC/TR-90/9, U.S. Dep. of Energy, Pittsburgh Energy Tech. Ctr., Pittsburgh, USA (1990). [Google Scholar]
  21. F. Legros, The mobility of long-runout landslides. Eng. Geol. 63 (2002) 301–331. [Google Scholar]
  22. A. Lucas and A. Mangeney, Mobility and topographic effects for large Valles Marineris landslides on Mars. Geophys. Res. Lett. 34 (2007) L10201. [CrossRef] [Google Scholar]
  23. A. Lucas, A. Mangeney and J.P. Ampuero, Frictional weakening in landslides on Earth and on other planetary bodies. Nature Commun. 5 (2014) 3417. [Google Scholar]
  24. A. Mangeney-Castelnau, J.P. Vilotte, M.O. Bristeau, B. Perthame, F. Bouchut, C. Simeoni and S. Yernini, Numerical modeling of avalanches based on Saint-Venant equations using a kinetic scheme. J. Geophys. Res. 108 (2003) 2527. [CrossRef] [Google Scholar]
  25. A. Mangeney-Castelnau, F. Bouchut, J.P. Vilotte, E. Lajeunesse, A. Aubertin and M. Pirulli, On the use of Saint-Venant equations for simulating the spreading of a granular mass. J. Geophys. Res. 110 (2005) B09103. [Google Scholar]
  26. A. Mangeney, L. S. Tsimring, D. Volfson, I.S. Aranson and F. Bouchut, Avalanche mobility induced by the presence of an erodible bed and associated entrainment. Geophys. Res. Lett. 34 (2007) L22401. [CrossRef] [Google Scholar]
  27. A. Mangeney, O. Roche, O. Hungr, N. Mangold, G. Faccanoni and A. Lucas, Erosion and mobility in granular collapse over sloping beds. J. Geophys. Res.-Earth Surf. 115 (2010) F03040. [CrossRef] [Google Scholar]
  28. A. Mangeney, Landslide boost from entrainment. Nature Geosci. 4 (2011) 77–78. [CrossRef] [Google Scholar]
  29. N. Mangold, A. Mangeney, V. Migeon, V. Ansan, A. Lucas, D. Baratoux and F. Bouchut, Sinuous gullies on Mars: Frequency, distribution, and implications for flow properties. J. Geophys. Res. Planets 115 (2010) E11001. [CrossRef] [Google Scholar]
  30. C. Meruane, A. Tamburrino, O. Roche, On the role of the ambient fluid on gravitational granular flow dynamics. J. Fluid. Mech. 648 (2010) 381–404. [Google Scholar]
  31. L. Moretti, A. Mangeney, Y. Capdeville, E. Stutzmann, C. Christian Huggel, D. Schneider and F. Francois Bouchut, Numerical modeling of the Mount Steller landslide flow history and of the generated long period seismic waves. Geophys. Res. Lett. 39 (2012) L16402. [CrossRef] [Google Scholar]
  32. M.J. Niebling, E.G. Flekkoy, K.J. Mâloy and R. Toussaint, Mixing of a granular layer falling through a fluid. Phys. Rev. E 82 (2010) 011301. [CrossRef] [Google Scholar]
  33. M. Ouriemi, P. Aussillous and E. Guazzelli, Sediment dynamics. Part I: Bed-load transport by shearing flows. J. Fluid Mech. 636 (2009) 295–319. [CrossRef] [MathSciNet] [Google Scholar]
  34. C. Parés and M.J. Castro, On the well-balance property of Roe’s method for nonconservative hyperbolic systems. Applications to shallow-water systems. ESAIM: M2AN 38 (2004) 821–852. [CrossRef] [EDP Sciences] [Google Scholar]
  35. M. Pailha and O. Pouliquen, A two-phase flow description of the initiation of underwater granular avalanches. J. Fluid Mech. 633 (2009) 115–135. [CrossRef] [Google Scholar]
  36. M. Pelanti, F. Bouchut and A. Mangeney, A Roe-type scheme for two-phase shallow granular flows over variable topography. ESAIM: M2AN 42 (2008) 851–885. [CrossRef] [EDP Sciences] [Google Scholar]
  37. M. Pelanti, F. Bouchut and A. Mangeney, A Riemann solver for single-phase and two-phase shallow flow models based on relaxation. Relations with Roe and VFRoe solvers. J. Comput. Phys. 230 (2011) 515–550. [CrossRef] [Google Scholar]
  38. E.B. Pitman and L. Le, A two-fluid model for avalanche and debris flows. Philos. Trans. R. Soc. A 363 (2005) 1573–1601. [CrossRef] [Google Scholar]
  39. S.P. Pudasaini, Y. Wang and K. Hutter, Modelling debris flows down general channels. Natural Hazards Earth System Sci. 5 (2005) 799–819. [CrossRef] [Google Scholar]
  40. L. Rondon, O. Pouliquen and P. Aussillous, Granular collapse in a fluid: role of the initial volume fraction. Phys. Fluids 23 (2011) 073301. [CrossRef] [Google Scholar]
  41. J.F. Richardson and W.N. Zaki, Sedimentation and Fluuidization: part I. Trans. Inst. Chem. Eng. 32 (1954) 35–53. [Google Scholar]
  42. O. Roche, M. Attali, A. Mangeney and A. Lucas, On the run out distance of geophysical gravitational flows: insight from fluidized granular collapse experiments. Earth Planet. Sci. Lett. 311 (2011) 375–385. [CrossRef] [Google Scholar]
  43. O. Roche, Y. Niño, A. Mangeney, B. Brand, N. Pollock and G.A. Valentine, Dynamic pore pressure variations induce substrate erosion by pyroclastic flows, Geology 41 (2013) 1107–1110. [CrossRef] [Google Scholar]
  44. S. Roux and F. Radjai, Texture-dependent rigid plastic behavior. In Proc. of Physics of Dry Granular Media 1997. Edited by H.J. Herrmann. Kluwer. Cargèse, France (1998) 305–311. [Google Scholar]
  45. S.B. Savage and K. Hutter, The motion of a finite mass of granular material down a rough incline. J. Fluid Mach. 199 (1989) 177–215. [CrossRef] [MathSciNet] [Google Scholar]
  46. U.E. Shamy and M. Zhegal, Coupled continuum discrete model for saturated granular materials. J. Engrg. Mech. 131 (2005) 413–426. [CrossRef] [Google Scholar]
  47. V. Topin, F. Dubois, Y. Monerie, F. Perales, A. Wachs: Micro-rheology of dense particulate flows: application to immersed avalanches. J. Non-Newtonian Fluid 166 (2011) 63–72. [CrossRef] [Google Scholar]
  48. C. Voivret, F. Radjai and J.Y. Delenne, M.S. El Youssoufi, Space-filling properties of polydisperse granular media. Phys. Rev. E 76 (2007) 021301. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you