Free Access
Issue
ESAIM: M2AN
Volume 49, Number 1, January-February 2015
Page(s) 69 - 99
DOI https://doi.org/10.1051/m2an/2014025
Published online 12 January 2015
  1. B. Ayuso, J.A. Carrillo and C.-W. Shu, Discontinuous Galerkin methods for the one-dimensional Vlasov–Poisson system. Kinetic and Related Models 4 (2011) 955–989. [CrossRef] [MathSciNet] [Google Scholar]
  2. B. Ayuso, J.A. Carrillo and C.-W. Shu, Discontinuous Galerkin methods for the multi-dimensional Vlasov–Poisson problem. Math. Models Methods Appl. Sci. 22 (2012) 1250042. [CrossRef] [Google Scholar]
  3. C.K. Birdsall and A.B. Langdon, Plasma Physics Via Computer Simulation. McGraw-Hill, New York (1985). [Google Scholar]
  4. Y. Cheng and I.M. Gamba, Numerical study of one-dimensional Vlasov–Poisson equations for infinite homogeneous stellar systems. Commun. Nonlinear Sci. Numer. Simul. 17 (2012) 2052–2061. [Google Scholar]
  5. Y. Cheng, I.M. Gamba, F. Li and P.J. Morrison, Discontinuous Galerkin methods for Vlasov–Maxwell equations. SIAM J. Numer. Anal. 52 (2014) 1017–1049. [CrossRef] [Google Scholar]
  6. C.Z. Cheng and G. Knorr, The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22 (1976) 330–351. [NASA ADS] [CrossRef] [Google Scholar]
  7. P.G. Ciarlet, Finite element method for elliptic problems. Noth-Holland, Amsterdam (1978). [Google Scholar]
  8. B. Cockburn and C.-W. Shu, TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52 (1989) 411–435. [Google Scholar]
  9. B. Cockburn and C.-W. Shu, The Runge–Kutta local projection p1-discontinuous Galerkin finite element method for scalar conservation laws. ESAIM: M2AN 25 (1991) 337–361. [Google Scholar]
  10. G.H. Cottet and P.A. Raviart, On Particle in Cell methods for the Vlasov–Poisson equations. Transport Theory Stat. Phys. 15 (1986) 1–31. [CrossRef] [Google Scholar]
  11. M. Crouzeix and V. Thomée, The stability in Lp and Formula of the L2-projection onto finite element function spaces. Math. Comput. 178 (1987) 521–532. [Google Scholar]
  12. B. Eliasson, Numerical modelling of the two-dimensional Fourier transformed Vlasov–Maxwell system, J. Comput. Phys. 190 (2003) 501–522. [CrossRef] [Google Scholar]
  13. B. Eliasson, Numerical simulations of the Fourier-transformed Vlasov–Maxwell system in higher dimensions-theory and applications. Transport Theory Stat. Phys. 39 (2011) 387–465. [CrossRef] [Google Scholar]
  14. R.E. Heath, I.M. Gamba, P.J. Morrison and C. Michler, A discontinuous Galerkin method for the Vlasov–Poisson system. J. Comput. Phys. 231 (2012) 1140–1174. [CrossRef] [Google Scholar]
  15. G. Jacobs and J.S. Hesthaven, Implicit-explicit time integration of a high-order particle-in-cell method with hyperbolic divergence cleaning. Comput. Phys. Commun. 180 (2009) 1760–1767. [CrossRef] [Google Scholar]
  16. A.J. Klimas and W.M. Farrell, A splitting algorithm for Vlasov simulation with filamentation filtration. J. Comput. Phys. 110 (1994) 150–163. [CrossRef] [Google Scholar]
  17. M.C. Pinto and M. Mehrenberger, Convergence of an adaptive semi-Lagrangian scheme for the Vlasov–Poisson system. Numer. Math. 108 (2008) 407–444. [CrossRef] [MathSciNet] [Google Scholar]
  18. J.-M. Qiu and C.-W. Shu, Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow. J. Comput. Phys. 230 (2011) 863–889. [CrossRef] [Google Scholar]
  19. C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77 (1988) 439–471. [Google Scholar]
  20. E. Sonnendrücker, J. Roche, P. Bertrand and A. Ghizzo, The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys. 149 (1999) 201–220. [CrossRef] [MathSciNet] [Google Scholar]
  21. A. Suzuki and T. Shigeyama, A conservative scheme for the relativistic Vlasov–Maxwell system. J. Comput. Phys. 229 (2010) 1643–1660. [CrossRef] [Google Scholar]
  22. H. Yang and F. Li, Discontinuous Galerkin methods for relativitistic Vlasov–Maxwell equations, in preparation. [Google Scholar]
  23. H. Yang, F. Li and J. Qiu, Dispersion and dissipation errors of two fully discrete discontinuous Galerkin methods. J. Sci. Comput. 55 (2013) 552–574. [CrossRef] [Google Scholar]
  24. S.I. Zaki, L.R.T. Gardner and T.J.M. Boyd, A finite element code for the simulation of one-dimensional Vlasov plasmas. I. Theory. J. Comput. Phys. 79 (1988) 184–199. [CrossRef] [Google Scholar]
  25. S.I. Zaki, T.J.M. Boyd and L.R.T. Gardner, A finite element code for the simulation of one-dimensional Vlasov plasmas. II. Applications. J. Comput. Phys. 79 (1988) 200–208. [CrossRef] [Google Scholar]
  26. Q. Zhang and C-W Shu, Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42 (2004) 641–666. [Google Scholar]
  27. Q. Zhang and C-W Shu, Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for symmetrizable systems of conservation laws. SIAM J. Numer. Anal. 44 (2006) 1703–1720. [CrossRef] [MathSciNet] [Google Scholar]
  28. Q. Zhang and C-W. Shu, Stability analysis and a priori error estimates to the third order explicit Runge–Kutta discontinuous Galerkin method for scalar conservation laws. SIAM J. Numer. Anal. 48 (2010) 1038–1063. [CrossRef] [MathSciNet] [Google Scholar]
  29. X. Zhong and C.-W. Shu, Numerical resolution of discontinuous Galerkin methods for time dependent wave equations. Comput. Methods Appl. Mech. Eng. 200 (2011) 2814–2827. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you