Free Access
Issue
ESAIM: M2AN
Volume 49, Number 1, January-February 2015
Page(s) 171 - 192
DOI https://doi.org/10.1051/m2an/2014028
Published online 14 January 2015
  1. B. Ainseba, M. Bendahmane and A. Noussair, A reaction-diffusion system modeling predator-prey with prey-taxis, Nonlin. Anal.: Real World Applications 8 (2008) 2086–2105. [CrossRef] [Google Scholar]
  2. V. Anaya, M. Bendahmane and M. Sepúlveda, Mathematical and numerical analysis for reaction-diffusion systems modeling the spread of early tumors. Boletin de la Sociedad Española de Matemática Aplicada 47 (2009) 55–62. [Google Scholar]
  3. V. Anaya, M. Bendahmane and M. Sepúlveda, A numerical analysis of a reaction-diffusion system modelling the dynamics of growth tumors. Math. Models Methods Appl. Sci. 20 (2010) 731–756. [CrossRef] [Google Scholar]
  4. V. Anaya, M. Bendahmane and M. Sepúlveda, Mathematical and numerical analysis for predator-prey system in a polluted environment. Netw. Heterogen. Media 5 (2010) 813–847. [CrossRef] [Google Scholar]
  5. B. Andreianov, M. Bendahmane and R. Ruiz-Baier, Analysis of a finite volume method for a cross-diffusion model in population dynamics. Math. Models Methods Appl. Sci. 21 (2011) 307–344. [Google Scholar]
  6. M. Bendahmane, Weak and classical solutions to predator-prey system with crossdiffusion. Nonlin. Anal. 73 (2010) 2489–2503. [CrossRef] [Google Scholar]
  7. M. Bendahmane, K. H. Karlsen and J. M. Urbano, On a two-sidedly degenerate chemotaxis model with volume-filling effect, Math. Models Methods Appl. Sci. 17 (2007) 783–804. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Bendahmane, T. Lepoutre, A. Marrocco and B. Perthame, Conservative cross diffusions and pattern formation through relaxation, J. Math. Pure Appl. 92 (2009) 651–667. [CrossRef] [Google Scholar]
  9. M. Bendahmane and M. Sepúlveda, Convergence of a finite volume scheme for nonlocal reaction-diffusion systems modelling an epidemic disease. Discrete Contin. Dyn. Syst. Ser. B 11 (2009) 823–853. [CrossRef] [MathSciNet] [Google Scholar]
  10. R. Eymard, Th. Gallouët and R. Herbin. Finite volume methods. In: Handb. Numer. Anal., vol. VII. North-Holland, Amsterdam (2000). [Google Scholar]
  11. G. Galiano, M. L. Garzón and A. Jüngel, Analysis and numerical solution of a nonlinear cross-diffusion system arising in population dynamics. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 95 (2001) 281–295. [Google Scholar]
  12. G. Galiano, M. L. Garzón and A. Jüngel, Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model, Numer. Math. 93 (2003) 655–673. [CrossRef] [MathSciNet] [Google Scholar]
  13. A. Hasting and T. Powell, Chaos in a three-species food chain. Ecology 72 (1991) 896–903. [CrossRef] [Google Scholar]
  14. A. Klebanoff and A. Hastings, Chaos in three species food chains. J. Math. Biol. 32 (1994) 427–451. [CrossRef] [Google Scholar]
  15. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod (1969). [Google Scholar]
  16. Y. Lou and W. Ni, Diffusion, self-diffusion and cross-diffusion. J. Differ. Eq. 131 (1996) 79–131. [CrossRef] [Google Scholar]
  17. K. McCann and P. Yodzis, Bifurcation structure of a three-species food chain model. Theoret. Popul. Biol. 48 (1995) 93–125. [CrossRef] [Google Scholar]
  18. Nirenberg, L., On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa 13 (1959) 116–162. [Google Scholar]
  19. P. Y. H. Pang and M. Wang, Strategy and stationary pattern in a three-species predator-prey model. J. Differ. Eq. 200 (2004) 245–273. [CrossRef] [Google Scholar]
  20. M. L. Rosenzweig, Exploitation in three trophic levels. Am. Nat. 107 (1973) 275–294. [CrossRef] [Google Scholar]
  21. N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species. J. Theoret. Biol. 79 (1979) 83–99. [Google Scholar]
  22. R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, 3rd edition. North-Holland, Amsterdam, reprinted in the AMS Chelsea series, AMS, Providence (2001). [Google Scholar]
  23. C. Tian, Z. Lin and M. Pedersen, Instability induced by cross-diffusion in reaction-diffusion systems. Nonlin. Anal.: Real World Applications 11 (2010) 1036–1045. [CrossRef] [Google Scholar]
  24. A. Turing, The chemical basis of morphogenesis. Philos. Trans. R. Soc. Ser. B 237 (1952) 37–72. [Google Scholar]
  25. P. Yodzis and S. Innes, Body size and consumer-resource dynamics. Am. Nat. 139 (1992) 1151–1175. [CrossRef] [Google Scholar]
  26. Z. Wen and C. Zhong, Non-constant positive steady states for the HP food chain system with cross-diffusions. Math. Comput. Model. 51 (2010) 1026–1036. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you