Free Access
Issue
ESAIM: M2AN
Volume 49, Number 1, January-February 2015
Page(s) 193 - 220
DOI https://doi.org/10.1051/m2an/2014030
Published online 16 January 2015
  1. I. Aavatsmark, G.T. Eigestad, B.T. Mallison and J.M. Nordbotten, A compact multipoint flux approximation method with improved robustness. Numer. Methods Partial Differ. Eq. 24 (2008) 1329–1360. [Google Scholar]
  2. O. Angelint, C. Chavant, E. Chénier and R. Eymard, A finite volume scheme for diffusion problem on general meshes applying monitny constraints. SIAM J. Numer. Anal. 47 (2010) 4193–4213. [CrossRef] [Google Scholar]
  3. F. Brezzi, K. Lipnikov and V. Simoncini, A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Model. Methods. Appl. Sci. 15 (2005) 1533–1551. [Google Scholar]
  4. F. Brezzi, K. Lipnikov, M. Shashkov and V. Simoncini, A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech. Engrg. 196 (2007) 3682–3692. [CrossRef] [MathSciNet] [Google Scholar]
  5. J. Droniou, R. Eymard, T. Gallouët and R. Herbin, A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Model. Methods. Appl. Sci. 20 (2010) 265–295. [Google Scholar]
  6. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. Handb. Numer. Anal. Elsevier Sciences (2000). [Google Scholar]
  7. R. Eymard, T. Gallouët and R. Herbin, A new finite volume scheme for anisotropic diffusion problems on general grids: Convergence analysis. C. R. Math. Acad. Sci. Paris 344 (2007) 403–406. [CrossRef] [MathSciNet] [Google Scholar]
  8. R. Herbin and F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In Finite volumes for complex applications. V. ISTE, London (2008) 659–692. [Google Scholar]
  9. D. Li and G. Chen, Introduction to difference methods for parabolic equation. Beijing, Science Press (1995) (Chinese). [Google Scholar]
  10. J.E. Morel, R.M. Roberts and M.J. Shashkov, A local support-operators diffusion discretization scheme for quadrilateral r-z meshes. J. Comput. Phys. 144 (1998) 17–51. [CrossRef] [Google Scholar]
  11. J.E. Roberts and J.-M.Thomas, Mixed and hybrid finite element methods. Handb. Numer. Anal. Elsevier Sciences (1987). [Google Scholar]
  12. Y. Saad, Iterative method for sparse linear systems. PWS publishing, New York (1996). [Google Scholar]
  13. J. Wu, Z. Dai, Z. Gao and G. Yuan, Linearity preserving nine-point schemes for diffusion equation on distorted quadrilateral meshes, J. Comput. Phys. 229 (2010) 3382–3401. [CrossRef] [Google Scholar]
  14. L. Yin, J. Wu and Y. Yao, A cell functional minimization scheme for parabolic problem. J. Comput. Phys. 229 (2010) 8935–8951. [CrossRef] [Google Scholar]
  15. L. Yin, J. Wu and Y. Yao, A cell functional minimization scheme for domain decomposition method on non-orthogonal and non-matching meshes. Numer. Math. 128 (2014) 773–804. [CrossRef] [MathSciNet] [Google Scholar]
  16. Y. Coudiére, J.-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two-dimensional diffusion convection problem. Math. Model. Numer. Anal. 33 (1999) 493–516. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you