Free Access
Issue
ESAIM: M2AN
Volume 49, Number 2, March-April 2015
Page(s) 503 - 528
DOI https://doi.org/10.1051/m2an/2014046
Published online 17 March 2015
  1. R.A. Adams, Sobolev spaces. Vol. 65 of Pure Appl. Math. Academic Press, New York, London (1975). [Google Scholar]
  2. F. Armero and E. Petöcz, Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Comput. Methods Appl. Mech. Engrg. 158 (1998) 269–300. [CrossRef] [MathSciNet] [Google Scholar]
  3. Y. Ayyad, M. Barboteu and J.R. Fernández, A frictionless viscoelastodynamic contact problem with energy consistent properties: numerical analysis and computational aspects. Comput. Methods Appl. Mech. Engrg. 198 (2009) 669–679. [CrossRef] [MathSciNet] [Google Scholar]
  4. N.J. Carpenter, R.L. Taylor and M.G. Katona, Lagrange constraints for transient finite element surface contact. Int. J. Numer. Methods Engrg. 32 (1991) 103–128. [Google Scholar]
  5. F. Chouly, P. Hild and Y. Renard, A Nitsche finite element method for dynamic contact. 1. Space semi-discretization and time-marching schemes. ESAIM: M2AN 49 (2015) 481–502. [CrossRef] [EDP Sciences] [Google Scholar]
  6. P.G. Ciarlet, Handbook of Numerical Analysis, The finite element method for elliptic problems. Edited by P.G. Ciarlet and J.L. Lions, vol. II, Chap. 1. North Holland (1991) 17–352. [Google Scholar]
  7. F. Dabaghi, A. Petrov, J. Pousin and Y. Renard, Numerical approximation of a one dimensional elastodynamic contact problem based on mass redistribution method. Submitted (2013). Available at http://hal.archives-ouvertes.fr/hal-00917450. [Google Scholar]
  8. F. Dabaghi, A. Petrov, J. Pousin and Y. Renard, Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary. ESAIM: M2AN 48 (2014) 1147–1169. [CrossRef] [EDP Sciences] [Google Scholar]
  9. P. Deuflhard, R. Krause and S. Ertel, A contact-stabilized Newmark method for dynamical contact problems. Int. J. Numer. Methods Engrg. 73 (2008) 1274–1290. [Google Scholar]
  10. D. Doyen, A. Ern and S. Piperno, Time-integration schemes for the finite element dynamic Signorini problem. SIAM J. Sci. Comput. 33 (2011) 223–249. [CrossRef] [Google Scholar]
  11. Y. Dumont and L. Paoli, Vibrations of a beam between obstacles. Convergence of a fully discretized approximation. ESAIM: M2AN 40 (2006) 705–734. [CrossRef] [EDP Sciences] [Google Scholar]
  12. A. Ern and J.-L. Guermond, Theory and practice of finite elements. In vol. 159 of Appl. Math. Sci. Springer-Verlag, New York (2004). [Google Scholar]
  13. O. Gonzalez, Exact energy and momentum conserving algorithms for general models in nonlinear elasticity. Comput. Methods Appl. Mech. Engrg. 190 (2000) 1763–1783. [CrossRef] [MathSciNet] [Google Scholar]
  14. C. Hager, S. Hüeber and B.I. Wohlmuth, A stable energy-conserving approach for frictional contact problems based on quadrature formulas. Int. J. Numer. Methods Engrg. 73 (2008) 205–225. [Google Scholar]
  15. P. Hauret, Mixed interpretation and extensions of the equivalent mass matrix approach for elastodynamics with contact. Comput. Methods Appl. Mech. Engrg. 199 (2010) 2941–2957. [Google Scholar]
  16. P. Hauret and P. Le Tallec, Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact. Comput. Methods Appl. Mech. Engrg. 195 (2006) 4890–4916. [Google Scholar]
  17. C. Kane, E.A. Repetto, M. Ortiz and J.E. Marsden, Finite element analysis of nonsmooth contact. Comput. Methods Appl. Mech. Engrg. 180 (1999) 1–26. [CrossRef] [MathSciNet] [Google Scholar]
  18. H.B. Khenous, Problèmes de contact unilatéral avec frottement de Coulomb en élastostatique et élastodynamique. Etude mathématique et résolution numérique. Ph.D. thesis, INSA de Toulouse (2005). [Google Scholar]
  19. H.B. Khenous, P. Laborde and Y. Renard, Mass redistribution method for finite element contact problems in elastodynamics. Eur. J. Mech. A Solids 27 (2008) 918–932. [Google Scholar]
  20. R. Krause and M. Walloth, Presentation and comparison of selected algorithms for dynamic contact based on the Newmark scheme. Appl. Numer. Math. 62 (2012) 1393–1410. [CrossRef] [Google Scholar]
  21. T.A. Laursen and V. Chawla, Design of energy conserving algorithms for frictionless dynamic contact problems. Int. J. Numer. Methods Engrg. 40 (1997) 863–886. [Google Scholar]
  22. T.A. Laursen and G.R. Love, Improved implicit integrators for transient impact problems – geometric admissibility within the conserving framework. Int. J. Numer. Methods Engrg. 53 (2002) 245–274. [Google Scholar]
  23. L. Paoli, Time discretization of vibro-impact. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 359 (2001) 2405–2428. [Google Scholar]
  24. L. Paoli and M. Schatzman, A numerical scheme for impact problems. I. The one-dimensional case. SIAM J. Numer. Anal. 40 (2002) 702–733. [CrossRef] [MathSciNet] [Google Scholar]
  25. L. Paoli and M. Schatzman, A numerical scheme for impact problems. II. The multidimensional case. SIAM J. Numer. Anal. 40 (2002) 734–768. [CrossRef] [Google Scholar]
  26. Y. Renard, The singular dynamic method for constrained second order hyperbolic equations: application to dynamic contact problems. J. Comput. Appl. Math. 234 (2010) 906–923. [CrossRef] [MathSciNet] [Google Scholar]
  27. Y. Renard, Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity. Comput. Meth. Appl. Mech. Engrg. 256 (2013) 38–55. [CrossRef] [Google Scholar]
  28. B. Wohlmuth, Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numerica (2011) 569–734. [Google Scholar]
  29. P. Wriggers, Computational Contact Mechanics. Wiley (2002). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you