Free Access
Volume 49, Number 2, March-April 2015
Page(s) 481 - 502
DOI https://doi.org/10.1051/m2an/2014041
Published online 17 March 2015
  1. R.A. Adams, Sobolev spaces. Pure Appl. Math., vol. 65. Academic Press, New York, London (1975). [Google Scholar]
  2. J. Ahn and D.E. Stewart, Existence of solutions for a class of impact problems without viscosity. SIAM J. Math. Anal. 38 (2006) 37–63. [CrossRef] [MathSciNet] [Google Scholar]
  3. P. Alart and A. Curnier, A generalized newton method for contact problems with friction. J. Mech. Theor. Appl. 7 (1988) 67–82. [Google Scholar]
  4. F. Armero and E. Petőcz, Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Comput. Methods Appl. Mech. Eng. 158 (1998) 269–300. [Google Scholar]
  5. M. Astorino, F. Chouly, and M.A. Fernández, An added-mass free semi-implicit coupling scheme for fluid-structure interaction. C. R. Math. Acad. Sci. Paris 347 (2009) 99–104. [CrossRef] [MathSciNet] [Google Scholar]
  6. J.-P. Aubin and A. Cellina, Differential inclusions, vol. 264 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin (1984). [Google Scholar]
  7. R. Becker, P. Hansbo, and R. Stenberg, A finite element method for domain decomposition with non-matching grids. ESAIM: M2AN 37 (2003) 209–225. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  8. S.-C. Brenner and L.-R. Scott, The Mathematical Theory of Finite Element Methods, vol. 15 of Texts Appl. Math. Springer-Verlag, New York, 2007. [Google Scholar]
  9. H. Brezis, Équations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier 18 (1968) 115–175. [CrossRef] [MathSciNet] [Google Scholar]
  10. E. Burman and M.A. Fernández, Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility. Comput. Methods Appl. Mech. Eng. 198 (2009) 766–784. [CrossRef] [Google Scholar]
  11. G. Choudury and I. Lasiecka, Optimal convergence rates for semidiscrete approximations of parabolic problems with nonsmooth boundary data. Numer. Funct. Anal. Optim. 12 (1991) 469–485 (1992). [CrossRef] [MathSciNet] [Google Scholar]
  12. F. Chouly, An adaptation of Nitsche’s method to the Tresca friction problem. J. Math. Anal. Appl. 411 (2014) 329–339. [CrossRef] [Google Scholar]
  13. F. Chouly and P. Hild, A Nitsche-based method for unilateral contact problems: numerical analysis. SIAM J. Numer. Anal. 51 (2013) 1295–1307. [CrossRef] [Google Scholar]
  14. F. Chouly, P. Hild, and Y. Renard, Symmetric and non-symmetric variants of Nitsche’s method for contact problems in elasticity: theory and numerical experiments. Math. Comp. (2014). DOI:10.1090/S0025-5718-02913-X. [Google Scholar]
  15. F. Chouly, P. Hild and Y. Renard, A Nitsche finite element method for dynamic contact. 2. Stability of the schemes and numerical experiments. ESAIM: M2AN 49 (2015) 503–528. [CrossRef] [EDP Sciences] [Google Scholar]
  16. P.G. Ciarlet, Handbook of Numerical Analysis. The finite element method for elliptic problems. Edited by P.G. Ciarlet and J.L. Lions. In vol II, chap. 1. North Holland (1991) 17–352. [Google Scholar]
  17. F. Dabaghi, A. Petrov, J. Pousin, and Y. Renard, Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary. ESAIM: M2AN 48 (2014) 1147–1169. [CrossRef] [EDP Sciences] [Google Scholar]
  18. C. D’Angelo and P. Zunino, Numerical approximation with Nitsche’s coupling of transient Stokes’/Darcy’s flow problems applied to hemodynamics. Appl. Numer. Math. 62 (2012) 378–395. [CrossRef] [Google Scholar]
  19. R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Évolution: semi-groupe, variationnel. Vol. 8. Masson, Paris (1988). [Google Scholar]
  20. K. Deimling, Multivalued differential equations. In vol. 1 of de Gruyter Series Nonlin. Anal. Appl. Walter de Gruyter & Co., Berlin (1992). [Google Scholar]
  21. C. Eck, J. Jarušek, and M. Krbec, Unilateral contact problems. In vol. 270 of Pure Appl. Math. Chapman & Hall/CRC, Boca Raton, FL (2005). [Google Scholar]
  22. A. Ern and J.-L. Guermond, Theory and practice of finite elements. In vol. 159 of Appl. Math. Sci. Springer-Verlag, New York (2004). [Google Scholar]
  23. R. Glowinski and P. Le Tallec, Augmented Lagrangian and operator-splitting methods in nonlinear mechanics. In vol. 9 of SIAM Studies Appl. Math. Society for Industrial and Applied Mathematics, Philadelphia, PA (1989). [Google Scholar]
  24. O. Gonzalez, Exact energy and momentum conserving algorithms for general models in nonlinear elasticity. Comput. Methods Appl. Mech. Eng. 190 (2000) 1763–1783. [Google Scholar]
  25. W. Han and M. Sofonea, Quasistatic contact problems in viscoelasticity and viscoplasticity. In vol. 30 of AMS/IP Stud. Adv. Math. American Mathematical Society, Providence, RI (2002). [Google Scholar]
  26. A. Hansbo and P. Hansbo, A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput. Methods Appl. Mech. Eng. 193 (2004) 3523–3540. [Google Scholar]
  27. P. Hansbo, Nitsche’s method for interface problems in computational mechanics. GAMM-Mitt. 28 (2005) 183–206. [CrossRef] [MathSciNet] [Google Scholar]
  28. P. Hansbo, J. Hermansson, and T. Svedberg, Nitsche’s method combined with space-time finite elements for ALE fluid-structure interaction problems. Comput. Methods Appl. Mech. Eng. 193 (2004) 4195–4206. [CrossRef] [Google Scholar]
  29. J. Haslinger, I. Hlavcáˇek, and J. Nečas, Handbook of Numerical Analysis. Numerical methods for unilateral problems in solid mechanics. Edited by P.G. Ciarlet and J.L. Lions. In Vol. IV, chap. 2. North Holland (1996) 313–385. [Google Scholar]
  30. P. Hauret and P. Le Tallec, Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact. Comput. Methods Appl. Mech. Engrg. 195 (2006) 4890–4916. [Google Scholar]
  31. B. Heinrich and B. Jung, Nitsche mortaring for parabolic initial-boundary value problems. Electron. Trans. Numer. Anal. 32 (2008) 190–209. [MathSciNet] [Google Scholar]
  32. P. Heintz and P. Hansbo, Stabilized Lagrange multiplier methods for bilateral elastic contact with friction. Comput. Methods Appl. Mech. Eng. 195 (2006) 4323–4333. [CrossRef] [MathSciNet] [Google Scholar]
  33. H.B. Khenous, Problèmes de contact unilatéral avec frottement de Coulomb en élastostatique et élastodynamique. Etude mathématique et résolution numérique. Ph.D. thesis, INSA de Toulouse (2005). [Google Scholar]
  34. H.B. Khenous, P. Laborde, and Y. Renard, Mass redistribution method for finite element contact problems in elastodynamics. Eur. J. Mech. A Solids 27 (2008) 918–932. [Google Scholar]
  35. N. Kikuchi and J.T. Oden, Contact problems in elasticity: a study of variational inequalities and finite element methods. In vol. 8 of SIAM Stud. Appl. Math. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1988). [Google Scholar]
  36. J.U. Kim, A boundary thin obstacle problem for a wave equation. Comm. Partial Differ. Equ. 14 (1989) 1011–1026. [Google Scholar]
  37. T.A. Laursen, Computational contact and impact mechanics. Springer-Verlag, Berlin (2002). [Google Scholar]
  38. T.A. Laursen and V. Chawla, Design of energy conserving algorithms for frictionless dynamic contact problems. Int. J. Numer. Methods Eng. 40 (1997) 863–886. [Google Scholar]
  39. G. Lebeau and M. Schatzman, A wave problem in a half-space with a unilateral constraint at the boundary. J. Differ. Equ. 53 (1984) 309–361. [CrossRef] [Google Scholar]
  40. J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36 (1971) 9–15. [CrossRef] [MathSciNet] [Google Scholar]
  41. C. Pozzolini, Y. Renard, and M. Salaün, Vibro-impact of a plate on rigid obstacles: existence theorem, convergence of a scheme and numerical simulations. IMA J. Numer. Anal. 33 (2013) 261–294. [CrossRef] [MathSciNet] [Google Scholar]
  42. Y. Renard, The singular dynamic method for constrained second order hyperbolic equations: application to dynamic contact problems. J. Comput. Appl. Math. 234 (2010) 906–923. [CrossRef] [MathSciNet] [Google Scholar]
  43. Y. Renard, Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity. Comput. Meth. Appl. Mech. Engrg. 256 (2013) 38–55. [CrossRef] [Google Scholar]
  44. R. Stenberg, On some techniques for approximating boundary conditions in the finite element method. In proc. of International Symposium on Mathematical Modelling and Computational Methods Modelling 94 (Prague, 1994). J. Comput. Appl. Math. 63 (1995) 139–148. [CrossRef] [MathSciNet] [Google Scholar]
  45. V. Thomée, Galerkin finite element methods for parabolic problems. In vol. 25 of Springer Ser. Comput. Math. Springer-Verlag, Berlin (1997). [Google Scholar]
  46. B. Wohlmuth, Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numer. (2011) 569–734. [Google Scholar]
  47. P. Wriggers, Computational Contact Mechanics. Wiley (2002). [Google Scholar]
  48. P. Wriggers and G. Zavarise, A formulation for frictionless contact problems using a weak form introduced by Nitsche. Comput. Mech. 41 (2008) 407–420. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you