Free Access
Volume 49, Number 2, March-April 2015
Page(s) 551 - 558
Published online 17 March 2015
  1. F. Alouges, A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J. Numer. Anal. 34 (1997) 1708–1726. [CrossRef] [MathSciNet] [Google Scholar]
  2. L. Baňas, A. Prohl and R. Schätzle, Finite element approximations of harmonic map heat flows and wave maps into spheres of nonconstant radii. Numer. Math. 115 (2010) 395–432. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.W. Barrett, S. Bartels, X. Feng and A. Prohl, A convergent and constraint-preserving finite element method for the p-harmonic flow into spheres. SIAM J. Numer. Anal. 45 (2007) 905–927. [CrossRef] [MathSciNet] [Google Scholar]
  4. S. Bartels, Semi-implicit approximation of wave maps into smooth or convex surfaces. SIAM J. Numer. Anal. 47 (2009) 3486–3506. [CrossRef] [Google Scholar]
  5. S. Bartels, Numerical analysis of a finite element scheme for the approximation of harmonic maps into surfaces. Math. Comput. 79 (2010) 1263–1301. [CrossRef] [Google Scholar]
  6. S. Bartels, Projection-free approximation of geometrically constrained partial differential equations. Preprint (2013). [Google Scholar]
  7. S. Bartels, X. Feng and A. Prohl, Finite element approximations of wave maps into spheres. SIAM J. Numer. Anal. 46 (2008) 61–87. [CrossRef] [MathSciNet] [Google Scholar]
  8. S. Bartels, C. Lubich and A. Prohl, Convergent discretization of heat and wave map flows to spheres using approximate discrete Lagrange multipliers. Math. Comput. 78 (2009) 1269–1292. [CrossRef] [Google Scholar]
  9. A. Freire, S. Müller and M. Struwe, Weak compactness of wave maps and harmonic maps. Ann. Inst. Henri Poincaré Anal. Non Linéaire 15 (1998) 725–754. [CrossRef] [MathSciNet] [Google Scholar]
  10. T. Karper and F. Weber, A new angular momentum method for computing wave maps into spheres. Technical Report. Preprint ArXiv:1312.3257 (2013). [Google Scholar]
  11. J. Krieger, W. Schlag and D. Tataru, Renormalization and blow up for charge one equivariant critical wave maps. Invent. Math. 171 (2008) 543–615. [CrossRef] [MathSciNet] [Google Scholar]
  12. S. Müller and M. Struwe, Spatially discrete wave maps on (1 + 2)-dimensional space-time. Topol. Methods Nonlinear Anal. 11 (1998) 295–320. [Google Scholar]
  13. J. Shatah and M. Struwe, Geometric wave equations. In vol. 2 Courant Lect. Notes Math. New York University Courant Institute of Mathematical Sciences, New York (1998). [Google Scholar]
  14. D. Tataru, The wave maps equation. Bull. Amer. Math. Soc. 41 (2004) 185–204 (electronic). [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you