Free Access
Volume 49, Number 3, May-June 2015
Page(s) 621 - 639
Published online 03 April 2015
  1. C. Bernardi and Y. Maday, Spectral Methods, in the Handb. Numer. Anal. V. Edited by P.G. Ciarlet and J.-L. Lions. North-Holland (1997) 209–485. [Google Scholar]
  2. C. Bernardi, Y, Maday and F. Rapetti, Discrétisations variationnelles de problèmes aux limites elliptiques. In vol. 45 of Collection Math. Appl. Springer-Verlag (2004). [Google Scholar]
  3. C. Bernardi, F. Coquel and P.-A. Raviart, Automatic coupling and finite element discretization of the Navier–Stokes and heat equations, Internal Report 10001, Laboratoire Jacques-Louis Lions (2010). [Google Scholar]
  4. F. Brezzi, J. Rappaz and P.-A. Raviart, Finite dimensionnal approximation of nonlinear problems, Part I: Branches of nonsingular solutions. Numer. Math. 36 (1980) 1–25. [CrossRef] [MathSciNet] [Google Scholar]
  5. F. Brezzi, C. Canuto and A. Russo, A self-adaptive formulation for the Euler/Navier–Stokes coupling. Comput. Methods Appl. Mech. Engrg. 73 (1989) 317–330. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Bulíček, E. Feireisl and J. Málek, A Navier–Stokes-Fourier system for incompressible fluids with temperature dependent material coefficients. Nonlin. Anal. Real World Appl. 10 (2009) 992–1015. [CrossRef] [Google Scholar]
  7. M. Dauge, Problèmes de Neumann et de Dirichlet sur un polyèdre dans R3: régularité dans les espaces de Sobolev Lp. C.R. Acad. Sci. Paris Sér. I 307 (1988) 27–32. [Google Scholar]
  8. M. Dauge, Neumann and mixed problems on curvilinear polyhedra. Integral Equations Oper. Theory 15 (1992) 227–261. [Google Scholar]
  9. V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms. Springer Ser. Comput. Math. Springer-Verlag, Berlin (1986). [Google Scholar]
  10. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman (1985). [Google Scholar]
  11. Y. Maday and E.M. Rønquist, Optimal error analysis of spectral methods with emphasis on non-constant coefficients and deformed geometries. Comput. Methods Appl. Mech. Engrg. 80 (1990) 91–115. [CrossRef] [MathSciNet] [Google Scholar]
  12. N.G. Meyers, An Lp-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sc. Norm. Sup. Pisa 17 (1963) 189–206. [Google Scholar]
  13. A. Quarteroni, Some results of Bernstein and Jackson type for polynomial approximation in Lp-spaces. Japan J. Appl. Math. 1 (1984) 173–181. [Google Scholar]
  14. G. Talenti, Best constant in Sobolev inequality. Ann. Math. Pura ed Appl. Ser. IV 110 (1976) 353–372. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you