Free Access
Volume 49, Number 3, May-June 2015
Page(s) 641 - 662
Published online 03 April 2015
  1. N.A. Adams and S. Stolz, On the Approximate Deconvolution procedure for LES. Phys. Fluids 2 (1999) 1699–1701. [Google Scholar]
  2. N. Adams and S. Stolz, A subgrid-scale deconvolution approach for shock capturing. J. Comput. Phys. 178 (2002) 391–426. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Benzi and M. Olshanskii, An augmented Lagrangian-based approach to the Oseen problem. SIAM J. Sci. Comput. 28 (2006) 2095–2113. [CrossRef] [Google Scholar]
  4. L.C. Berselli and L. Bisconti, On the structural stability of the Euler-Voight and Navier-Stokes-Voight models. Nonlinear Anal. 75 (2012) 117–130. [CrossRef] [MathSciNet] [Google Scholar]
  5. J. Bramble, J. Pasciak and O. Steinbach, On the stability of the L2 projection in H1(Ω). Math. Comput. 71 (2002) 147–156. [CrossRef] [MathSciNet] [Google Scholar]
  6. T. Chacon and R. Lewandowski, Mathematical and numerical foundations of turbulence models and applications. Springer, New York (2014). [Google Scholar]
  7. S. Chen, C. Foias, D.D. Holm, E. Olson, E.S. Titi and S. Wynne, The Camassa–Holm equations as a closure model for turbulent channel and pipe flow. Phys. Rev. Lett. 81 (1998) 5338–5341. [CrossRef] [MathSciNet] [Google Scholar]
  8. S. Chen, C. Foias, E. Olson, E.S. Titi and W. Wynne, A connection between the Camassa–Holm equations and turbulent flows in channels and pipes. Phys. Fluids 11 (1999) 2343–2353. [CrossRef] [MathSciNet] [Google Scholar]
  9. A. Cheskidov, Boundary layer for the Navier–Stokes-α model of fluid turbulence. Arch. Ration. Mech. Anal. 172 (2004) 333–362. [CrossRef] [Google Scholar]
  10. A.A. Dunca, A two-level multiscale deconvolution method for the large eddy simulation of turbulent flows. Math. Models Methods Appl. Sci. 22 (2012) 1250001. [CrossRef] [Google Scholar]
  11. A. Dunca and Y. Epshteyn, On the Stolz–Adams deconvolution model for the Large-Eddy simulation of turbulent flows. SIAM J. Math. Anal. 37 (2005) 1890–1902. [CrossRef] [MathSciNet] [Google Scholar]
  12. V.J. Ervin and N. Heuer, Approximation of time-dependent, viscoelastic fluid flow: Crank–Nicolson, finite element approximation. Numer. Methods Partial Differ. Eq. 20 (2003) 248–283. [Google Scholar]
  13. C. Foias, D.D. Holm and E.S. Titi, The Navier–Stokes-alpha model of fluid turbulence. Physica D 152 (2001) 505–519. [CrossRef] [Google Scholar]
  14. C. Foias, D.D. Holm and E.S. Titi, The three dimensional viscous Camassa–Holm equations, and their relation to the Navier–Stokes equations and turbulence theory. J. Dyn. Differ. Eq. 14 (2002) 1–35. [CrossRef] [Google Scholar]
  15. K. Galvin, L. Rebholz and C. Trenchea, Efficient, unconditionally stable, and optimally accurate fe algorithms for approximate deconvolution models. SIAM J. Numer. Anal. 52 (2014) 678–707. [CrossRef] [Google Scholar]
  16. V. Girault and P.-A. Raviart. Finite element methods for Navier–Stokes equations: theory and algorithms. Springer-Verlag (1986). [Google Scholar]
  17. J.L. Guermond, J.T. Oden and S. Prudhomme, An interpretation of the Navier–Stokes-alpha model as a frame-indifferent Leray regularization. Physica D 177 (2003) 23–30. [CrossRef] [MathSciNet] [Google Scholar]
  18. T. Heister and G. Rapin, Efficient augmented Lagrangian-type preconditioning for the Oseen problem using grad-div stabilization. Int. J. Numer. Meth. Fluids 71 (2013) 118–134. [CrossRef] [Google Scholar]
  19. J. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier–Stokes problem. Part IV: Error analysis for the second order time discretization. SIAM J. Numer. Anal. 2 (1990) 353–384. [CrossRef] [MathSciNet] [Google Scholar]
  20. D. Holm and B.T. Nadiga, Modeling mesoscale turbulence in the barotropic double-gyre circulation. J. Phys. Oceanogr. 33 (2003) 2355–2365. [CrossRef] [Google Scholar]
  21. V. John, Reference values for drag and lift of a two dimensional time-dependent flow around a cylinder. Int. J. Numer. Meth. Fluids 44 (2004) 777–788. [CrossRef] [Google Scholar]
  22. V. John and M. Roland, Simulations of the turbulent channel flow at Reτ = 180 with projection-based finite element variational multiscale methods. Int. J. Numer. Meth. Fluids 55 (2007) 407–429. [CrossRef] [Google Scholar]
  23. V.K. Kalantarov and E.S. Titi, Global attractors and determining modes for the 3D Navier- Stokes-Voight equations. Chin. Ann. Math. Ser. B 30 (2009) 697–714. [CrossRef] [MathSciNet] [Google Scholar]
  24. J. Kim, P. Moin and R. Moser, Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177 (1987) 133–166. [Google Scholar]
  25. A. Larios and E.S. Titi, On the higher-order global regularity of the inviscid Voight regularization of the three-dimensional hydrodynamic models. Discrete Contin. Dyn. Syst. Ser. B 14 (2010) 603–627. [CrossRef] [MathSciNet] [Google Scholar]
  26. W. Layton, Introduction to the Numerical Analysis of Incompressible Viscous Flows. SIAM (2008). [Google Scholar]
  27. W. Layton, On Taylor/eddy solutions of approximate deconvolution models of turbulence. Appl. Math. Lett. 24 (2011) 23–26. [CrossRef] [Google Scholar]
  28. W. Layton and L. Rebholz, Approximate Deconvolution Models of Turbulence: Analysis, Phenomenology and Numerical Analysis. Springer-Verlag (2012). [Google Scholar]
  29. W. Layton, C. Manica, M. Neda and L. Rebholz, Numerical analysis and computational testing of a high accuracy Leray-deconvolution model of turbulence. Numer. Methods Partial Differ. Eq. 24 (2008) 555–582. [CrossRef] [Google Scholar]
  30. W. Layton, C. Manica, M. Neda, M.A. Olshanskii and L. Rebholz, On the accuracy of the rotation form in simulations of the Navier–Stokes equations. J. Comput. Phys. 228 (2009) 3433–3447. [CrossRef] [MathSciNet] [Google Scholar]
  31. E. Lunasin, S. Kurien, M. Taylor and E.S. Titi. A study of the Navier–Stokes-alpha model for two-dimensional turbulence. J. Turbulence 8 (2007) 751–778. [CrossRef] [Google Scholar]
  32. C. Manica and I. Stanculescu, Numerical analysis of Leray-Tikhonov deconvolution models of fluid motion. Comput. Math. Appl. 60 (2010) 1440–1456. [CrossRef] [Google Scholar]
  33. M. Marion and R. Temam, Navier–Stokes equations: Theory and approximation. Handb. Numer. Anal. VI (1998) 503–688. [Google Scholar]
  34. C. Manica, M. Neda, M.A. Olshanskii and L. Rebholz, Enabling accuracy of Navier-Stokes-alpha through deconvolution and enhanced stability. ESAIM: M2AN 45 (2011) 277–308. [CrossRef] [EDP Sciences] [Google Scholar]
  35. P. Mininni, D. Montgomery and A. Pouquet, Numerical solutions of the three-dimensional magnetohydrodynamic α model. Phys. Rev. E 71 (2005) 1–11. [CrossRef] [Google Scholar]
  36. R. Moser, J. Kim and N. Mansour, Direct numerical simulation of turbulent channel flow up to Reτ = 590. Phys. Fluids 11 (1999) 943–945. [CrossRef] [Google Scholar]
  37. A.P. Oskolkov, The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers. Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 38 (1973) 98–136. [MathSciNet] [Google Scholar]
  38. A.P. Oskolkov, On the theory of unsteady flows of kelvin-voigt fluids. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 115 (1982) 191–202. Boundary value problems of mathematical physics and related questions in the theory of functions, 14. [MathSciNet] [Google Scholar]
  39. L.G. Rebholz and M. Sussman, On the high accuracy NS-α-deconvolution model of turbulence. Math. Models Methods Appl. Sci. 20 (2010) 611–633. [CrossRef] [MathSciNet] [Google Scholar]
  40. L. Rebholz and S. Watro, A note on Taylor-eddy and Kavosnay solutions of NS-α-deconvolution and Leray-α-deconvolution models. J. Nonlinear Dyn. 2014 (2014) 1–5. [CrossRef] [Google Scholar]
  41. M. Schäfer and S. Turek, The benchmark problem ‘flow around a cylinder’ flow simulation with high performance computers II. In vol. 52 of Notes on Numerical Fluid Mechanics. Edited by E.H. Hirschel. Braunschweig, Vieweg (1996) 547–566. [Google Scholar]
  42. I. Stanculescu, Existence theory of abstract approximate deconvolution models of turbulence. Ann. Univ. Ferrara Sez. VII Sci. Mat. 54 (2008) 145–168. [CrossRef] [MathSciNet] [Google Scholar]
  43. S. Stolz, N. Adams and L. Kleiser, The approximate deconvolution model for large-eddy simulations of compressible flows and its application to shock-turbulent-boundary-layer interaction. Phys. Fluids 13 (2001) 2985–3001. [CrossRef] [Google Scholar]
  44. S. Stolz, N. Adams and L. Kleiser, An approximate deconvolution model for large-eddy simulations with application to incompressible wall-bounded flows. Phys. Fluids 13 (2001) 997–1015. [CrossRef] [Google Scholar]
  45. S. Zhang, A new family of stable mixed finite elements for the 3d Stokes equations. Math. Comput. 74 (2005) 543–554. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you