Free Access
Issue
ESAIM: M2AN
Volume 49, Number 3, May-June 2015
Page(s) 815 - 837
DOI https://doi.org/10.1051/m2an/2014050
Published online 08 April 2015
  1. I. Babuška, F. Nobile and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45 (2007) 1005–1034 . [CrossRef] [MathSciNet] [Google Scholar]
  2. I. Babuška, R. Tempone and G.E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42 (2004) 800–825. [CrossRef] [MathSciNet] [Google Scholar]
  3. J. Bäck, F. Nobile, L. Tamellini and R. Tempone, On the optimal polynomial approximation of stochastic PDEs by Galerkin and Collocation methods. Math. Model. Methods Appl. Sci. 22 (2012) 1250023. [CrossRef] [Google Scholar]
  4. J. Beck, F. Nobile, L. Tamellini, R. Tempone, Convergence of quasi-optimal Stochastic Galerkin Methods for a class of PDES with random coefficients. Comput. Math. Appl. 67 (2014) 732–751. [CrossRef] [Google Scholar]
  5. A. Chkifa, A. Cohen, R. DeVore and Ch. Schwab, Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs. Math. Model. Numer. Anal. 47 (2013) 253–280. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  6. A. Chkifa, A. Cohen and Ch. Schwab, High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs. Found. Comput. Math. 14 (2014) 601–633. [CrossRef] [MathSciNet] [Google Scholar]
  7. A. Chkifa, A. Cohen and C. Schwab, Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs. To appear in J. Math. Pures Appl. (2015). [Google Scholar]
  8. A. Cohen, M A. Davenport and D. Leviatan, On the stability and accuracy of least squares approximations. Found. Comput. Math. 13 (2013) 819–834. [CrossRef] [MathSciNet] [Google Scholar]
  9. A. Cohen, R. DeVore and C. Schwab, Convergence rates of best N-term Galerkin approximations for a class of elliptic sPDEs, Found. Comput. Math. 10 (2010) 615–646. [CrossRef] [MathSciNet] [Google Scholar]
  10. A. Cohen, R. DeVore and C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic PDE’s. Anal. Appl. 9 (2011) 1–37. [Google Scholar]
  11. D. Coppersmith and T.J. Rivlin, The growth of polynomials bounded at equally spaced points. SIAM J. Math. Anal. 23 (1992) 970–983. [CrossRef] [MathSciNet] [Google Scholar]
  12. Ph.J. Davis, Interpolation and Approximation. Blaisdell Publishing Company (1963). [Google Scholar]
  13. C. de Boor and A. Ron, Computational aspects of polynomial interpolation in several variables. Math. Comput. 58 (1992) 705–727. [CrossRef] [Google Scholar]
  14. C.J. Gittelson, An adaptive stochastic Galerkin method for random elliptic operators. Math. Comput. 82 (2013) 1515–1541. [CrossRef] [Google Scholar]
  15. M. Kleiber and T. D. Hien, The stochastic finite element methods. John Wiley & Sons, Chichester (1992). [Google Scholar]
  16. J. Kuntzman, Méthodes numériques - Interpolation, dérivées. Dunod, Paris (1959). [Google Scholar]
  17. G. Lorentz and R. Lorentz, Solvability problems of bivariate interpolation I. Constructive Approximation 2 (1986) 153–169. [CrossRef] [MathSciNet] [Google Scholar]
  18. G.Migliorati, Polynomial approximation by means of the random discrete L2 projection and application to inverse problems for PDEs with stochastic data. Ph.D. thesis, Dipartimento di Matematica “Francesco Brioschi” Politecnico di Milano, Milano, Italy, and Centre de Mathématiques Appliquées, École Polytechnique, Palaiseau, France (2013). [Google Scholar]
  19. G. Migliorati, Multivariate Markov-type and Nikolskii-type inequalities for polynomials associated with downward closed multi-index sets. J. Approx. Theory 189 (2015) 137–159. [CrossRef] [MathSciNet] [Google Scholar]
  20. G. Migliorati, F. Nobile, E. von Schwerin and R. Tempone, Analysis of discrete L2 projection on polynomial spaces with random evaluations. Found. Comput. Math. 14 (2014) 419–456. [MathSciNet] [Google Scholar]
  21. G. Migliorati, F. Nobile, E. von Schwerin and R. Tempone, Approximation of Quantities of Interest in stochastic PDEs by the random discrete L2 projection on polynomial spaces. SIAM J. Sci. Comput. 35 (2013) A1440–A1460. [CrossRef] [Google Scholar]
  22. V. Nistor and Ch. Schwab, High order Galerkin approximations for parametric, second order elliptic partial differential equations, Report 2012-22, Seminar for Applied Mathematics, ETH Zürich. Math. Models Methods Appl. Sci. 23 (2013). [Google Scholar]
  23. F. Nobile, R. Tempone and C.G. Webster, A sparse grid stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Num. Anal. 46 (2008) 2309–2345. [Google Scholar]
  24. F. Nobile, R. Tempone and C.G. Webster, An anisotropic sparse grid stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Num. Anal. 46 (2008) 2411–2442. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you