Free Access
Volume 49, Number 3, May-June 2015
Page(s) 787 - 814
Published online 08 April 2015
  1. L. Ambrosio and C. de Lellis, A note on admissible solutions of 1d scalar conservation laws and 2d Hamilton–Jacobi equations. J. Hyperbol. Differ. Eq. 31 (2004) 813–826. [CrossRef] [Google Scholar]
  2. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Math. Monogr. Oxford Univ. Press, Oxford (2000). [Google Scholar]
  3. C. Bardos, A.L. Roux and J. Nedélec, First order quasilinear equations with boundary conditions. Commun. Part Differ. Eq. 4 (1979) 1017–1034. [Google Scholar]
  4. M. Barrault, Y. Maday, N. Nguyen and A. Patera, An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris 339 (2004) 667–672. [Google Scholar]
  5. F. Bouchut and B. Perthame, Kruzkov’s estimates for scalar conservation laws revisited. Trans. Amer. Math. Soc. 350 (1998) 2847–2870. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Bressan, Hyperbolic Systems of Conservation Laws-The One-Dimensional Cauchy Problem. Oxford Univ. Press, Oxford (2000). [Google Scholar]
  7. K. Carlberg, C. Farhat, J. Cortial and D. Amsallem, The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows. J. Comput. Phys. 242 (2013) 623–647. [Google Scholar]
  8. B. Cockburn and G. Gripenberg, Continuous dependence on the nonlinearities of solutions of degenerate parabolic equations. J. Differ. Eq. 151 (1999) 231–251. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Drohmann, B. Haasdonk and M. Ohlberger, Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation. SIAM J. Sci. Comput. 34 (2012) A937–A969. [Google Scholar]
  10. L. Evans, Partial Differential Equations. In vol. 19 of Grad. Stud. Math. 2nd edition. American Mathematical Society, Providence (2010). [Google Scholar]
  11. R. Fox and H. Miura, An approximate analysis technique for design calculations. AIAA J. 9 (1971) 177–179. [CrossRef] [Google Scholar]
  12. M. Garavello and B. Piccoli, Traffic Flow on Networks – Conservation Laws Models. Vol. 1. American Institute of Mathematical Sciences, New York (2006). [Google Scholar]
  13. J.F. Gerbeau and D. Lombardi, Approximated Lax Pairs for the reduced order integration of nonlinear evolution equations. Technical report, INRIA Paris-Rocquencourt (2014). Preprint ArXiv:1401.4829. [Google Scholar]
  14. L. Gosse and C. Makridakis, Two a posteriori error estimates for one-dimensional scalar conservation laws. SIAM J. Numer. Anal. 38 (2000) 964–988. [CrossRef] [MathSciNet] [Google Scholar]
  15. M. Gunzburger, J. Peterson and J. Shadid, Reduced order modeling of time-dependent PDEs with multiple parameters in the boundary data. Comput. Methods Appl. Mech. 196 (2007) 1030–1047. [Google Scholar]
  16. B. Haasdonk and M. Ohlberger, Reduced basis method for finite volume approximations of parametrized evolution equations. Math. Model. Numer. Anal. 42 (2008) 277–302. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  17. D.B.P. Huynh, D.J. Knezevic and A.T. Patera, A static condensation reduced basis element method: approximation and a posteriori error estimation. ESAIM: M2AN 47 (2013) 213–251. [CrossRef] [EDP Sciences] [Google Scholar]
  18. L. Iapichino, A. Quarteroni and G. Rozza, A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks. Comput. Method Appl. Mech. 221–222 (2012) 63–82. [Google Scholar]
  19. R. LeVeque, Numerical Methods for Conservation Laws. Birkhauser Verlag, Berlin (1992). [Google Scholar]
  20. R. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002). [Google Scholar]
  21. A. Lóvgren, Y. Maday and E. Rónquist, The reduced basis element method: application to a thermal fin problem. SIAM J. Sci. Comput. 26 (2004) 240–258. [Google Scholar]
  22. A. Lóvgren, Y. Maday and E. Rónquist, A reduced basis element method for the steady Stokes problem. ESAIM: M2AN 40 (2006) 529–552. [CrossRef] [EDP Sciences] [Google Scholar]
  23. A. Manzoni, A. Quarteroni and G. Rozza, Certified reduced basis approximation for parametrized partial differential equations and applications. J. Math. Indian 1 (2011) 1–44. [Google Scholar]
  24. MATLAB. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts (2010). [Google Scholar]
  25. A. Noor, Recent advances in reduction methods for non-linear problems. Comput. Struct. 13 (1981) 31–44. [CrossRef] [Google Scholar]
  26. M. Ohlberger and S. Rave, Nonlinear reduced basis approximation of parametrized evolution equations via the method of freezing. C. R. Math. Acad. Sci. Paris, Série I 348 (2013) 901–906. [CrossRef] [Google Scholar]
  27. A. Patera and G. Rozza, Reduced Basis Approximation and a posteriori Error Estimation for Parametrized Partial Differential Equations. To appear in MIT Pappalardo Graduate Monographs in Mechanical Engineering. Massachusetts Institute of Technology (2009). [Google Scholar]
  28. T. Porsching, Estimation of the error in the reduced basis method solution of nonlinear equations. Math. Comput. 45 (1985) 487–496. [CrossRef] [MathSciNet] [Google Scholar]
  29. A. Quarteroni, L. Sacco and F. Saleri, Numerical Mathematics. In vol. 37 of Texts Appl. Math. 1st edition. Springer (2007). [Google Scholar]
  30. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, 2nd edition. Springer-Verlag, Berlin, Heidelberg (1994). [Google Scholar]
  31. G. Rozza, D. Huynh and A. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Meth. Eng. 15 (2008) 229–275. [Google Scholar]
  32. W. Rudin, Real and Complex Analysis, 2nd edition. Mc-Graw-Hill, New York (1974). [Google Scholar]
  33. T. Bui-Thanh, M. Damodaran and K. Willcox, Proper Orthogonal Decomposition extensions for parametric applications in transonic aerodynamics. In Proc. of 16th AIAA Comput. Fluid Dynamics (2003). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you