Free Access
Issue
ESAIM: M2AN
Volume 49, Number 3, May-June 2015
Page(s) 755 - 785
DOI https://doi.org/10.1051/m2an/2014052
Published online 08 April 2015
  1. A. Anantharaman and E. Cancès, Existence of minimizers for Kohn−Sham models in quantum chemistry, Ann. Inst. Henri Poincaré Anal. Non Lin. 26 (2009) 2425–2455. [CrossRef] [Google Scholar]
  2. O.K. Andersen, Simple approach to the band structure problem. Solid State Commun. 13 (1973) 133–136. [CrossRef] [Google Scholar]
  3. O.K. Andersen, Linear methods in band theory. Phys. Rev. B 12 (1975) 3060–3083. [CrossRef] [Google Scholar]
  4. O.K. Andersen and R.V. Kasowski, Electronic states as linear combinations of muffin-tin orbitals. Phys. Rev. B 4 (1971) 1064–1069. [CrossRef] [Google Scholar]
  5. I. Babuška and J. Osborn, Eigenvalue Problems, in Finite Element Methods (Part 1). Handb. Numer. Anal. Edited by P.G. Ciarlet and J.L. Lions. In vol. 2. Elsevier Science Publishers, North-Holand (1991) 640–787. [Google Scholar]
  6. I. Babuška and M. Rosenzweig, A finite element scheme for domains with corners. Numer. Math. 20 (1972) 1–21. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Bachmayr, H. Chen and R. Schneider, Error estimates for Hermite and even-tempered Gaussian approximations in quantum chemistry. Numer. Math. 128 (2014) 137–165. [CrossRef] [MathSciNet] [Google Scholar]
  8. F.B. Belgacem, The Mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173–197. [CrossRef] [MathSciNet] [Google Scholar]
  9. C. Bernardi, N. Débit and Y. Maday, Coupling finite element and spectral methods: first results. Math. Comput. 54 (1990) 21–29. [CrossRef] [Google Scholar]
  10. C. Bernardi, Y. Maday and A.T. Patera, A new non conforming approach to domain decomposition: The Mortar element method, In Collège de France Seminar, edited by H. Brezis and J.L. Lions, Pitman (1990). [Google Scholar]
  11. S.C. Brenner and L.R. Scott, Mathematical Theory of Finite Element Methods. Springer (2002). [Google Scholar]
  12. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer-Verlag, New York (1991). [Google Scholar]
  13. E. Cancès, R. Chakir and Y. Maday, Numerical analysis of the planewave discretization of some orbital-free and Kohn−Sham models. ESAIM: M2AN 46 (2012) 341–388. [CrossRef] [EDP Sciences] [Google Scholar]
  14. C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods for Fluid Dynamics. Springer-Verlag (1988). [Google Scholar]
  15. H. Chen and R. Schneider, DG methods using radial bases functions and plane waves for full-potential electronic structure calculations, preprint. [Google Scholar]
  16. H. Chen, X. Gong, L. He, Z. Yang and A. Zhou, Numerical analysis of finite dimensional approximations of Kohn−Sham models. Adv. Comput. Math. 38 (2013) 225–256. [CrossRef] [MathSciNet] [Google Scholar]
  17. M. Crouzeix and P.A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. Rev. Francaise Automat. Informat. Recherch Operationelle Sér. Anal. Numér. 7 (1973) 33–75. [Google Scholar]
  18. A. Edelman, T.A. Arias and S.T. Smith, The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20 (1998) 303–353. [CrossRef] [Google Scholar]
  19. Y.V. Egorov and B.W. Schulze, Pseudo-differential Operators, Singularities, Applications. Birkhäuser, Basel (1997). [Google Scholar]
  20. H. Ehrenreich, F. Seitz and D. Turnbull, Solid State Physics. Edited by H. Ehrenreich, F. Seitz and D. Turnbull, New York, London (1971). [Google Scholar]
  21. H.J. Flad, R. Schneider and B.W. Schulze, Asymptotic regularity of solutions to Hartree-Fock equations with Coulomb potential. Math. Meth. Appl. Sci. 31 (2008) 2172–2201. [CrossRef] [Google Scholar]
  22. S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and T. Østergaard Sørensen, The electron density is smooth away from the nuclei. Commun. Math. Phys. 228 (2002) 401–415. [CrossRef] [Google Scholar]
  23. S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and T. Østergaard Sørensen, Analyticity of the density of electronic wavefunctions. Arkiv för Matematik 42 (2004) 87–106. [CrossRef] [MathSciNet] [Google Scholar]
  24. S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and T. Østergaard Sørensen, Non-isotropic cusp conditions and regularity of the electron density of molecules at the nuclei. Ann. Henri Poincaré 8 (2007) 731–748. [CrossRef] [MathSciNet] [Google Scholar]
  25. X. Gonze, J.M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.Y. Raty and D.C. Allan, First-principles computation of material properties: the ABINIT software project. Comput. Mater. Sci. 25 (2002) 478–492. [CrossRef] [Google Scholar]
  26. P. Grisvard, Singularities in boundary value problems. In vol. 22 of Research Appl. Math. Masson, Paris (1992). [Google Scholar]
  27. M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and T. Østergaard Sørensen, Electron wavefunctions and densities for atoms. Ann. Henri Poincaré 2 (2001) 77–100. [CrossRef] [MathSciNet] [Google Scholar]
  28. P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas. Phys. Rev. B 136 (1964) 864–871. [Google Scholar]
  29. E. Hunsicker, V. Nistor and J.O. Sofo, Analysis of periodic Schrödinger operators: Regularity and approximation of eigenfunctions. J. Math. Phys. 49 (2008) 08350101–08350121. [CrossRef] [Google Scholar]
  30. B.M. Irons and A. Razzaque, Experience with the patch test for convergence of finite elements, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Part II. Edited by A.K. Aziz. Academic Press, New York (1972) 557–587. [Google Scholar]
  31. D.D. Koelling and G.O. Arbman, Use of energy derivative of the radial solution in an augmented plane wave method: application to copper. J. Phys. F: Metal Phys. 5 (1975) 2041–2054. [CrossRef] [Google Scholar]
  32. W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140 (1965) 1133–1138. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  33. E.E. Krasovskii, V.V. Nemoshkalenko and V.N. Antonov, On the accuracy of the wavefunctions calculated by LAPW method. I. Phys. B 91 (1993) 463–366. [Google Scholar]
  34. B. Langwallner, C. Ortner and E. Süli, Existence and convergence results for the Galerkin approximation of an electronic density functional. Math. Models Methods Appl. Sci. 20 (2010) 2237–2265. [CrossRef] [Google Scholar]
  35. C. Le Bris, Quelques problèmes mathématiques en chimie quanntique moléculaire. Ph.D. thesis, Ècole Polytechnique (1993). [Google Scholar]
  36. P. Lesaint, On the convergence of Wilson’s nonconforming element for solving the elastic problems. Comput. Methods Appl. Mech. Engrg. 7 (1976) 1–16. [CrossRef] [MathSciNet] [Google Scholar]
  37. Y. Maday and G. Turinici, Error bars and quadratically convergent methods for the numerical simulation of the Hartree-Fock equations. Numer. Math. 94 (2000) 739–770. [Google Scholar]
  38. G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt and L. Nordström, Efficient linearization of the augmented plane-wave method. Phys. Rev. B 64 (2001) 1951341–1951349. [Google Scholar]
  39. R.M. Martin, Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press (2005). [Google Scholar]
  40. A. Messiah, Quantum Mechanics, vol. I. Wiley, New York (1964). [Google Scholar]
  41. J.E. Osborn, Spectral approximation for compact operators. Math. Comput. 29 (1975) 712–725. [Google Scholar]
  42. P.A. Raviart and J.M. Thomas, Primal hybrid finite element methods for 2nd order elliptic equations. Math. Comput. 31 (1977) 391–413. [Google Scholar]
  43. R. Schneider, T. Rohwedder, A. Neelov and J. Blauert, Direct minimization for calculating invariant subspaces in density functional computations of the electronic structure. J. Comput. Math. 27 (2009) 360–387. [Google Scholar]
  44. K. Schwarz, P. Blaha and G.K.H. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences Comput. Phys. Commun. 147 (2002) 71–76. [CrossRef] [Google Scholar]
  45. D.J. Singh and L. Nordstrom, Planewaves, Pseudopotentials, and the LAPW Method. Springer-Berlin (2006). [Google Scholar]
  46. E. Sjöstedt, L. Nordström and D.J. Singh, An alternative way of linearizing the APW method. Solid State Commun. 114 (2000) 15–20. [CrossRef] [Google Scholar]
  47. J.C. Slater, Wave functions in a periodic potential. Phys. Rev. 51 (1937) 846–851. [CrossRef] [Google Scholar]
  48. G. Strang. Variational crimes in the finite element methods, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Part II. Edited by A.K. Aziz. Academic Press, New York (1972) 689–710. [Google Scholar]
  49. P. Suryanarayana, V. Gavini, T. Blesgen, K. Bhattacharya and M. Ortiz, Non-periodic finite-element formulation of Kohn−Sham density functional theory. J. Mech. Phys. Solid. 58 (2010) 256–280. [CrossRef] [MathSciNet] [Google Scholar]
  50. E.P. Wigner and F. Seitz, On the constitution of metallic sodium. Phys. Rev. 43 (1933) 804–810. [CrossRef] [Google Scholar]
  51. E. Zeidler, Nonlinear Functional Analysis and Its Applications. I: Fixed-Point Theorems, translated from the German by P.R. Wadsack. Springer-Verlag (1986). [Google Scholar]
  52. ABINIT, http://www.abinit.org/ [Google Scholar]
  53. FLEUR: The Jülich FLAPW code family, http://www.flapw.de/pm/. [Google Scholar]
  54. The exciting Code, http://exciting-code.org/. [Google Scholar]
  55. WIEN2k, http://www.wien2k.at/. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you