Free Access
Issue
ESAIM: M2AN
Volume 49, Number 3, May-June 2015
Page(s) 663 - 693
DOI https://doi.org/10.1051/m2an/2014057
Published online 03 April 2015
  1. B. Andreianov, M. Bendahmane, K.H. Karlsen and C. Pierre, Convergence of discrete duality finite volume schemes for the cardiac bidomain model. Netw. Heterogeneous Media 6 (2011) 195–240. [Google Scholar]
  2. B. Andreianov, F. Boyer and F. Hubert, Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes. Numer. Methods Partial Differ. Equ. 23 (2007) 145–195. [CrossRef] [MathSciNet] [Google Scholar]
  3. C. Bernardi, V. Girault and F. Hecht, A posteriori analysis of a penalty method and application to the Stokes problem. Math. Models Methods Appl. Sci. 13 (2003) 1599–1628. [CrossRef] [Google Scholar]
  4. F. Boyer and F. Hubert, Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities. SIAM J. Numer. Anal. 46 (2008) 3032–3070. [CrossRef] [MathSciNet] [Google Scholar]
  5. C. Carstensen and S. Funken, Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods. East-West J. Numer. Math. 8 (2000) 153–175. [MathSciNet] [Google Scholar]
  6. C. Chainais-Hillairet, Discrete duality finite volume schemes for two-dimensional drift-diffusion and energy-transport models. Internat. J. Numer. Methods Fluids 59 (2009) 239–257. [CrossRef] [MathSciNet] [Google Scholar]
  7. E.V. Chizhonkov and M.A. Olshanskii, On the domain geometry dependence of the LBB condition. ESAIM: M2AN 34 (2000) 935–951. [CrossRef] [EDP Sciences] [Google Scholar]
  8. M. Dobrowolski, On the LBB condition in the numerical analysis of the Stokes equations. Appl. Numer. Math. 54 (2005) 314–323. [CrossRef] [Google Scholar]
  9. S. Zsuppn, On the domain dependence of the infsup and related constants via conformal mapping. J. Math. Anal. Appl. 382 (2011) 856–863. [CrossRef] [Google Scholar]
  10. Y. Coudière and F. Hubert, A 3D discrete duality finite volume method for nonlinear elliptic equations. SIAM J. Sci. Comput. 33 (2011) 1739–1764. [Google Scholar]
  11. Y. Coudière and G. Manzini, The discrete duality finite volume method for convection-diffusion problems. SIAM J. Numer. Anal. 47 (2010) 4163–4192. [CrossRef] [MathSciNet] [Google Scholar]
  12. Y. Coudière, C. Pierre, O. Rousseau and R. Turpault, A 2D/3D discrete duality finite volume scheme. Application to ECG simulation. Int. J. Finite 6 (2009), electronic only. [Google Scholar]
  13. E. Dari, R. Durán, and C. Padra, Error estimators for nonconforming finite element approximations of the Stokes problem. Math. Comp. 64 (1995) 1017–1033. [CrossRef] [MathSciNet] [Google Scholar]
  14. S. Delcourte, Développement de méthodes de volumes finis pour la mécanique des fluides. Ph.D. thesis (in French), University of Toulouse III, France, 2007. Available at http://tel.archives-ouvertes.fr/tel-00200833/fr/ [Google Scholar]
  15. K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. ESAIM: M2AN 39 (2005) 1203–1249. [CrossRef] [EDP Sciences] [Google Scholar]
  16. S. Delcourte, K. Domelevo and P. Omnes, A discrete duality finite volume approach to Hodge decomposition and Div–Curl problems on almost arbitrary two–dimensional meshes. SIAM J. Numer. Anal. 45 (2007) 1142–1174. [CrossRef] [MathSciNet] [Google Scholar]
  17. S. Delcourte and P. Omnes, A discrete duality finite volume discretization of the vorticity-velocity-pressure stokes problem on almost arbitrary two-dimensional grids. Numer. Methods Partial Differ. Equ. DOI: 10.1002/num.21890 [Google Scholar]
  18. Y. Girault, and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (1986). [Google Scholar]
  19. A. Hannukainen, R. Stenberg, and M. Vohralík, A unified framework for a posteriori error estimation for the Stokes problem. Numer. Math. 122 (2012) 725–769. [CrossRef] [MathSciNet] [Google Scholar]
  20. F. Hermeline, A finite volume method for the approximation of diffusion operators on distorted meshes. J. Comput. Phys. 160 (2000) 481–499. [CrossRef] [MathSciNet] [Google Scholar]
  21. F. Hermeline, Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes. Comput. Methods Appl. Mech. Eng. 192 (2003) 1939–1959. [CrossRef] [MathSciNet] [Google Scholar]
  22. F. Hermeline, S. Layouni and P. Omnes, A finite volume method for the approximation of Maxwell’s equations in two space dimensions on arbitrary meshes. J. Comput. Phys. 227 (2008) 9365–9388. [CrossRef] [Google Scholar]
  23. S. Krell, Stabilized DDFV schemes for stokes problem with variable viscosity on general 2D meshes. Numer. Methods Partial Differ. Equ. 27 (2011) 1666–1706. [Google Scholar]
  24. S. Krell and G. Manzini, The discrete duality finite volume method for Stokes equations on three-dimensional polyhedral meshes. SIAM J. Numer. Anal. 50 (2012) 808–837. [CrossRef] [Google Scholar]
  25. P. Omnes, Y. Penel and Y. Rosenbaum, a posteriori error estimation for the discrete duality finite volume discretization of the Laplace equation. SIAM J. Numer. Anal. 47 (2009) 2782–2807. [CrossRef] [Google Scholar]
  26. L.E. Payne, and H.F. Weinberger, An optimal Poincaré inequality for convex domain. Arch. Rational Mech. Anal. 5 (1960) 286–292. [Google Scholar]
  27. J.R. Shewchuk, Triangle: Engineering a 2D quality mesh generator and delaunay triangulator, in Applied Computational Geometry: Towards Geometric Engineering, edited by M.C. Lin and D. Manocha. In vol. 1148 of Lect. Notes Comput. Sci. Springer-Verlag, Berlin (1996) 203–222. http://www.cs.cmu.edu/˜quake/triangle.html [Google Scholar]
  28. A. Veeser and R. Verfürth, Poincaré constants for finite element stars. IMA J. Numer. Anal. 32 (2012) 30–47. [CrossRef] [MathSciNet] [Google Scholar]
  29. R. Verfürth, A posteriori error estimation for the Stokes equations. Numer. Math. 55 (1989) 309–325. [CrossRef] [MathSciNet] [Google Scholar]
  30. R. Verfürth, A posteriori error estimation for the Stokes equations II non-conforming discretizations. Numer. Math. 60 (1991) 235–249. [CrossRef] [MathSciNet] [Google Scholar]
  31. R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques. Teubner–Wiley, Stuttgart (1996). [Google Scholar]
  32. R. Verfürth, Error estimates for some quasi-interpolation operators. ESAIM: M2AN 33 (1999) 695–713. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you