Free Access
Issue |
ESAIM: M2AN
Volume 49, Number 4, July-August 2015
|
|
---|---|---|
Page(s) | 1063 - 1084 | |
DOI | https://doi.org/10.1051/m2an/2015005 | |
Published online | 30 June 2015 |
- I. Aavatsmark, T. Barkve, O. Boe and T. Mannseth, Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media. J. Comput. Phys. 127 (1996) 2–14. [CrossRef] [Google Scholar]
- I. Aavatsmark, T. Barkve, O. Boe and T. Mannseth, Discretization on unstructured grids for inhomogeneous, anisotropic media part i: Derivation of the methods. SIAM J. Sci. Comput. 19 (1998a) 1700–1716. [CrossRef] [MathSciNet] [Google Scholar]
- I. Aavatsmark, T. Barkve, O. Boe and T. Mannseth, Discretization on unstructured grids for inhomogeneous, anisotropic media. part ii: Discussion and numerical results. SIAM J. Sci. Comput. 19 (1998b) 1717–1736. [CrossRef] [MathSciNet] [Google Scholar]
- L. Agélas and R. Masson, Convergence of finite volume mpfa o type schemes for heterogeenous anisotropic diffusion problems on general meshes. C.R. Acad. Paris Ser. I 346 (2008). [Google Scholar]
- L. Agélas, D.A. Di Pietro and J. Droniou, The g method for heterogeneous anisotropic diffusion on general meshes. ESAIM: M2AN 11 (2010) 597–625. [Google Scholar]
- L. Agélas, D.A. Di Pietro, R. Eymard and R. Masson, An abstract analysis framework for nonconforming approximations of anistropic heterogeneous diffusion problems. IJFV International Journal On Finite Volumes 7 (2010). [Google Scholar]
- L. Agélas, D.A. Di Pietro and R. Masson, A symmetric and coercive finite volume scheme for multiphase porous media flow problems with applications in the oil industry. In Finite volume for Complex Applications V. Edited by R. Eymard ans J.-M. Hérard. Wiley (2008) 35–51. [Google Scholar]
- L. Beirao da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. [CrossRef] [Google Scholar]
- L. Beirao da Veiga, K. Lipnikov and G. Manzini, The Mimetic Finite Difference Method for Elliptic Problems. Springer (2014). [Google Scholar]
- F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). [Google Scholar]
- F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43 (2005a) 1872–1896. [Google Scholar]
- F. Brezzi, K. Lipnikov and V. Simoncini, A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15 (2005b) 1533–1551. [CrossRef] [MathSciNet] [Google Scholar]
- J. Droniou, Finite volume schemes for diffusion equations: introduction to and review of modern methods. Special edition “P.D.E. Discretizations on Polygonal Meshes”. M3AS 24 (2014) 1575–1619. [Google Scholar]
- J. Droniou and R. Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 105 (2006) 35–71. [CrossRef] [MathSciNet] [Google Scholar]
- J. Droniou, R. Eymard, T. Gallouët and R. Herbin, A unified approach to mimetic finite differences, hybrid finite volume and mixed finite volume methods. IMA J. Numer. Anal. 31 (2011) 1357–1401. [Google Scholar]
- J. Droniou, R. Eymard, T. Gallouët and R. Herbin, Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. M3AS 23 (2013) 2395–2432. [Google Scholar]
- R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, In Techniques of scientific computiing, Part III. Handb. Numer. Anal. Edited by P.G. Ciarlet and J.-L. Lions. North-Holland, Amsterdam (2000) 713–1020. [Google Scholar]
- R. Eymard, T. Gallouët and R. Herbin, A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis. C.R. Math. Acad. Sci. Paris 344 (2007a) 403–406. [Google Scholar]
- R. Eymard, T. Gallouët and R. Herbin, Discretisation of heterogeneous and anisotropic diffusion problems on general nonconforming meshes sushi: a scheme using stabilisation and hybrid interfaces. IMA J. Numer. Anal. 30 (2010) 1009–1043x. [CrossRef] [MathSciNet] [Google Scholar]
- R. Eymard and R. Herbin, A new colocated finite volume scheme for the incompressible navier-stokes equations on general non matching grids. C.R. Math. Acad. Sci. Paris 344 (2007b) 659–662. [CrossRef] [MathSciNet] [Google Scholar]
- R. Eymard, R. Herbin and C. Guichard, Small stencil 3d schemes for diffusive flows in porous media. ESAIM: M2AN 46 (2012) 265–290. [CrossRef] [EDP Sciences] [Google Scholar]
- D.A. Di Pietro, Cell centered galerkin methods. C.R. Acad. Sci. Paris Ser. I 348 (2010) 31–34. [Google Scholar]
- D.A. Di Pietro, Cell centered galerkin methods for diffusive problems. ESAIM: M2AN 46 (2012) 111–144. [Google Scholar]
- M. Vohralík, Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes. ESAIM: M2AN 40 (2006) 367–391. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- M. Vohralík and B. Wohlmuth, From face to element unknowns by local static condensation with application to nonconforming finite elements. Comput. Methods Appl. Mech. Eng. 253 (2013a) 517–529. [CrossRef] [Google Scholar]
- M. Vohralík and B. Wohlmuth, Mixed finite element methods: implementation with one unknown per element, local flux expressions, positivity, polygonal meshes, and relations to other methods. Math. Models Methods Appl. Sci. 23 (2013b) 803–838. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.