Issue |
ESAIM: M2AN
Volume 49, Number 2, March-April 2015
|
|
---|---|---|
Page(s) | 303 - 330 | |
DOI | https://doi.org/10.1051/m2an/2014034 | |
Published online | 05 February 2015 |
Vertex Approximate Gradient Scheme for Hybrid Dimensional Two-Phase Darcy Flows in Fractured Porous Media∗
1
Laboratoire de Mathématiques J.A. Dieudonné, UMR 7351 CNRS,
University Nice Sophia Antipolis, and team COFFEE, INRIA Sophia Antipolis Méditerranée, Parc Valrose,
06108
Nice cedex 02,
France
massonr@unice.fr
2
Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, CNRS,
Laboratoire Jacques-Louis Lions, 75005
Paris,
France
Received: 27 November 2013
Revised: 1 July 2014
This paper presents a finite volume discretization of two-phase Darcy flows in discrete fracture networks taking into account the mass exchange between the matrix and the fracture. We consider the asymptotic model for which the fractures are represented as interfaces of codimension one immersed in the matrix domain, leading to the so called hybrid dimensional Darcy flow model. The pressures at the interfaces between the matrix and the fracture network are continuous corresponding to a ratio between the normal permeability of the fracture and the width of the fracture assumed to be large compared with the ratio between the permeability of the matrix and the size of the domain. The discretization is an extension of the Vertex Approximate Gradient (VAG) scheme to the case of hybrid dimensional Darcy flow models. Compared with Control Volume Finite Element (CVFE) approaches, the VAG scheme has the advantage to avoid the mixing of the fracture and matrix rocktypes at the interfaces between the matrix and the fractures, while keeping the low cost of a nodal discretization on unstructured meshes. The convergence of the scheme is proved under the assumption that the relative permeabilities are bounded from below by a strictly positive constant. This assumption is needed in the convergence proof in order to take into account discontinuous capillary pressures in particular at the matrix fracture interfaces. The efficiency of our approach compared with CVFE discretizations is shown on two numerical examples of fracture networks in 2D and 3D.
Mathematics Subject Classification: 65M08 / 65M12 / 76S05
Key words: Finite Volume Scheme / discrete fracture network / two-phase darcy flow / discontinuous capillary pressure
© EDP Sciences, SMAI, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.