Free Access
Volume 49, Number 4, July-August 2015
Page(s) 1127 - 1156
Published online 30 June 2015
  1. L. Abrahamsson and H.O. Kreiss, The initial boundary value problem for the Schrödinger equation. Math. Methods Appl. Sci. 13 (1990a) 385–390. [CrossRef] [Google Scholar]
  2. L. Abrahamsson and H.O. Kreiss, Boundary conditions for the parabolic equation in a range-dependent duct. J. Acoust. Soc. Amer. 87 (1990b) 2438–2441. [CrossRef] [MathSciNet] [Google Scholar]
  3. G.D. Akrivis and V.A. Dougalis, Finite difference discretization with variable mesh of the Schrödinger equation in a variable domain. Bull. Greek Math. Soc. 31 (1990) 19–28. [Google Scholar]
  4. G.D. Akrivis, V.A. Dougalis and G.E. Zouraris, Finite difference schemes for the ‘Parabolic’ Equation in a variable depth environment with a rigid bottom boundary condition. SIAM J. Numer. Anal. 39 (2001) 539-565. [CrossRef] [Google Scholar]
  5. D.C. Antonopoulou, Theory and numerical analysis of parabolic approximations. Ph.D. thesis (in Greek). University of Athens, Greece (2006). [Google Scholar]
  6. D.C. Antonopoulou, Galerkin methods for the ‘Parabolic Equation’ Dirichlet problem in a variable 2-D and 3-D topography, Appl. Numer. Math. 67 (2013) 17–34. [CrossRef] [Google Scholar]
  7. D.C. Antonopoulou and M. Plexousakis, Discontinuous Galerkin methods for the linear Schrödinger equation in noncylindrical domains. Numer. Math. 115 (2010) 585–608. [CrossRef] [MathSciNet] [Google Scholar]
  8. D.C. Antonopoulou, V.A. Dougalis and G.E. Zouraris, Galerkin methods for parabolic and Schrödinger equations with dynamical boundary conditions and applications to underwater acoustics. SIAM J. Numer. Anal. 47 (2009) 2752–2781. [CrossRef] [Google Scholar]
  9. D.C. Antonopoulou, G.D. Karali, M. Plexousakis and G.E. Zouraris, Crank–Nicolson finite element discretizations for a two dimensional linear Schrödinger-type equation posed in a noncylindrical domain. Math. Comput. 84 (2015) 1571–1598. [CrossRef] [Google Scholar]
  10. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. In vol. 15 of Texts Appl. Math. Springer-Verlag, New York (1994). [Google Scholar]
  11. V.A. Dougalis, N.A. Kampanis, F. Sturm, and G.E. Zouraris, Numerical solution of the Parabolic Equation in range-dependent waveguides in Effective Computational Methods for Wave Propagation. Edited by N.A. Kampanis et al. Chapman and Hall/CRC, Boca Raton (2008) 175–207. [Google Scholar]
  12. M. Ehrhardt, Discrete artificial boundary conditions. Ph.D. thesis, Technische Universität, Berlin (2001). [Google Scholar]
  13. J. Escher, Quasilinear parabolic systems with dynamical boundary conditions, Commun. Partial. Differ. Eqs. 18 (1993) 1309–1364. [Google Scholar]
  14. L.C. Evans, Partial Differential Equations. In vol. 19 of Grad. Stud. Math. American Mathematical Society (1998). [Google Scholar]
  15. F.B. Jensen, W.A. Kuperman, M.B. Porter, H. Schmidt, Computational Ocean Acoustics. AIP Series in Modern Acoustics and Signal Processing. American Institute of Physics, New York (1994). [Google Scholar]
  16. M.H. Schultz, Spline Analysis. Prentice-Hall (1973). [Google Scholar]
  17. F. Sturm, Modélisation mathématique et numérique d’ un problème de propagation en acoustique sous-marine: prise en compte d’un environnement variable tridimensionnel. Ph.D. thesis, Université de Toulon et du Var, France (1997). [Google Scholar]
  18. F.D. Tappert, The parabolic approximation method, in Wave Propagation and Underwater Acoustics, edited by J.B. Keller and J.S. Papadakis. In vol. 70 of Lect. Notes Phys. Springer-Verlag, Berlin (1977) 224-287. [Google Scholar]
  19. J.L. Vázquez and E. Vitillaro, Heat equation with dynamical boundary conditions of reactive type. Commun. Partial. Differ. Eqs. 33 (2008) 561–612. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you